Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear fission breeder reactor

Energy Production Nuclear Fission Nuclear Fusion Breeder Reactors... [Pg.268]

III. Resources for Nuclear Fission, Breeder, and Fusion Reactors... [Pg.73]

III. RESOURCES FOR NUCLEAR FISSION, BREEDER, AND FUSION REACTORS... [Pg.76]

We shall estimate the resources for nuclear fission, breeder, and fusion reactors by using geological data. In breeder reactors, the fertile isotopes U-238 and Th-232 are converted to the fissile isotopes U-233, U-235, Pu-239, and Pu-241 as the result of neutron capture. Thorium is a very widely distributed element and does not represent a limiting supply when used in breeder reactors with uranium. For this reason, the following discnssion is restricted to uranium resources for fission and breeder reactors. [Pg.76]

The breeder reactor, which would produce and bum plutonium and gradually increase the inventory of fissionable material, requires reprocessing of nuclear fuel. As of 1995 only limited research and development was in progress on breeder reactors, mainly in France and Japan. [Pg.182]

Many of the fission products formed in a nuclear reactor are themselves strong neutron absorbers (i.e. poisons ) and so will stop the chain reaction before all the (and Pu which has also been formed) has been consumed. If this wastage is to be avoided the irradiated fuel elements must be removed periodically and the fission products separated from the remaining uranium and the plutonijjm. Such reprocessing is of course inherent in the operation of fast-breeder reactors, but whether or not it is used for thermal reactors depends on economic and political factors. Reprocessing is currently undertaken in the UK, France and Russia but is not considered to be economic in the USA. [Pg.1260]

The fission ofor Tu liberates, on average, two to three neutrons. One neutron is required to sustain the nuclear fission chain reaction. In a nuclear breeder reactor, the extra neutrons are used to induce nuclear reactions that lead to the production of Tu. The sequence begins by arranging for... [Pg.865]

Several alternative technologies that were heavily supported failed to become commercially viable. The most obvious case was the fast breeder reactor. Such reactors are designed to produce more fissionable material from nonfissionable uranium than is consumed. The effort was justified by fears of uranium exhaustion made moot by massive discoveries in Australia and Canada. Prior to these discoveries extensive programs to develop breeder reactors were government-supported. In addition, several different conventional reactor technologies were aided. The main ongoing nuclear effort is research to develop a means to effect controlled fusion of atoms. [Pg.1105]

The phrase "nuclear power" covers a number of technologies for producing electric power other than by burning a fossil fuel. Nuclear fission in pressurized water-moderated reactors—light water reactors— represents the enrrent teehnology for nuclear power. Down the line are fast breeder reactors. On the distant horizon is nnclear fusion. [Pg.105]

Breeder reactor A nuclear chain reactor in which transmutation produces a greater number of fissionable atoms than the number of consumed parent atoms. [Pg.1754]

Nuclear fission power plants were at one time thought to be the answer to diminishing fossil fuels. Although the enriched uranium fuel was also limited, an advanced nuclear reactor called breeders would be able to produce more radioactive fuel, in the form of plutonium, than consumed. This would make plutonium fuel renewable. Although plutonium has been called one of the most toxic elements known, it is similar to other radioactive materials and requires careful handling since it can remain radioactive for thousands of years. [Pg.213]

Conventional nuclear reactors and advanced breeder reactors were America s primary energy strategy since the 1950s to resolve the fossil fuel problem but when a reactor accident occurred in 1979 at Three Mile Island in Pennsylvania, public and investor confidence in nuclear fission dropped. The accident was triggered by the failure of a feedwater pump that supplied water to the steam generators. The backup feedwater pumps were not connected to the system as required, which caused the reactor to heat up. The safety valve then failed to act which allowed a radioactive water and gas leak. This was the worst nuclear power accident in the U.S., but in this accident no one was killed and no one was directly injured. At Three Mile Island faulty instrumentation gave incorrect readings for the... [Pg.213]

The production of 10 TW of nuclear power with the available nuclear fission technology will require the construction of a new 1 GWe nuclear fission plant every day for the next 50 years. If this level of deployment would be reached, the known terrestrial uranium resources will be depleted in 10 years [3], Breeder reactor technology should be developed and used. Fusion nuclear power could give an inexhaustible energy source, but currently no exploitable fusion technology is available and the related technological issues are extremely hard to solve. [Pg.352]

The most common use of uranium is to convert the rare isotope U-235, which is naturally fissionable, into plutonium through neutron capture. Plutonium, through controlled fission, is used in nuclear reactors to produce energy, heat, and electricity. Breeder reactors convert the more abundant, but nonfissionable, uranium-238 into the more useful and fissionable plutonium-239, which can be used for the generation of electricity in nuclear power plants or to make nuclear weapons. [Pg.315]

French chemist Eugene-Melchior Peligot Dense radioactive metal named for the planet Uranus first used in nuclear fission in the 1930s it isotopes fundamental to the operation of nuclear breeder reactors. [Pg.251]

One can consider other energy options. For example, to supply 40 to 60 Terawatts of energy via nuclear fission is possible, it could be done. However it necessitates increasing by almost a factor of x500 the number of nuclear power plants ever built. The consequence of such demand is that we would soon deplete earth s uranium supplies. Breeder reactors are an un-stable possibility, like mixing matches, children, and gasoline. Depending upon ones viewpoint fusion remains either a to be hoped for miracle, or an expensive civil-works project. [Pg.555]

Uranium-235 is the most important uranium isotope for nuclear fuel. Uranium-238, although not fissionable itself, can be converted into the fissionable plutonium-239 in a breeder reactor by the following nuclear reaction ... [Pg.956]

Bose-Einstein Condensate phase of matter that is created just above absolute zero when atoms lose their individual identity Boyle s Law law that states volume of a gas is inversely related to its pressure Breeder Reactor type of nuclear reactor that creates or breeds fissionable plutonium from nonfissionable U-238 Buckministerfullerene Cg, allotrope of carbon consisting of spherical arrangement of carbon, named after architect Buckmin-ister Fuller, Invertor of geodesic dome Buffer a solution that resists a change in pH... [Pg.337]

Deriving electrical energy from nuclear fission produces almost no atmospheric pollutants, such as carbon dioxide, sulfur oxides, nitrogen oxides, heavy metals, and airborne particulates. Although not discussed in the text, there is also an abundant supply of fuel for nuclear fission reactors in the form of plutonium-239, which can be manufactured from uranium-238. Use the keyword Breeder Reactor on your Internet search engine to learn about how this is so. [Pg.704]

The most abundant isotope of uranium, 238U, does not undergo fission. In a breeder reactor, however, a 238U atom captures a neutron and emits two /3 particles to make a fissionable isotope of plutonium, which can then be used as fuel in a nuclear reactor. Write a balanced nuclear equation. [Pg.983]

In breeder reactors, the most common isotope of uranium, U-238, can be converted by neutron bombardment into fissionable Pu-239 (plutonium-239). The excess nuclear fuel can be used in other reactors or to build nuclear weapons. [Pg.18]

It should be noted that breeders would not reduce the demand for uranium ore for many decades because several LWR and/or HWR converters (which produce fissionable material, but less than consumption) are required during the run-in of a breeder cycle to equilibrium. The doubling time of a breeder (the time required for the breeder to produce sufficient fissionable material to start up a second breeder reactor) might be a significant part of its operating life. Furthermore, natural uranium will be required for the thorium cycle, if it is used, and for startup of the fusion cycle. The tritium for the fusion cycle will be made in nuclear reactors, as it now is for nuclear weapons. The nuclear industry will always be dependent on a continuing supply of uranium from ore. [Pg.961]

One potential problem facing the nuclear power industry is the supply of " fU. Some scientists have suggested that we have nearly depleted those uranium deposits rich enough in U to make production of fissionable fuel economically feasible. Because of this possibility, breeder reactors have been developed, in which fissionable fuel is actually produced while the reactor runs. In a breeder reactor the major component of natural uranium, nonfissionable -9zU, is changed to fissionable Pu. The reaction involves absorption of a neutron, followed by production of two particles ... [Pg.1001]


See other pages where Nuclear fission breeder reactor is mentioned: [Pg.865]    [Pg.865]    [Pg.865]    [Pg.201]    [Pg.217]    [Pg.225]    [Pg.513]    [Pg.865]    [Pg.251]    [Pg.120]    [Pg.121]    [Pg.520]    [Pg.20]    [Pg.109]    [Pg.513]    [Pg.381]    [Pg.1117]    [Pg.1647]    [Pg.1647]    [Pg.539]   
See also in sourсe #XX -- [ Pg.865 ]




SEARCH



Breeder reactor

Breeders

Fission reactors

Nuclear fission

Nuclear reactors

Nuclear reactors breeder

© 2024 chempedia.info