Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear effects experimental

A breakthrough was achieved a few years ago when it was realized that an anal dic calculation of the deuterium recoil, structure and polarizability corrections is possible in the zero range approximation [76, 77]. An analytic result for the difference in (12.29), obtained as a result of a nice calculation in [77], is numerically equal 44 kHz, and within the accuracy of the zero range approximation perfectly explains the difference between the experimental result and the sum of the nonrecoil corrections. More accurate calculations of the nuclear effects in the deuterium hyperfine structure beyond the zero range approximation are feasible, and the theory of recoil and nuclear corrections was later improved in a number of papers [78, 79, 80, 81, 82]. Comparison of the results of these works with the experimental data on the deuterium hyperfine splitting may be used as a test of the deuteron models and state of the art of the nuclear calculations. [Pg.252]

For the trimethylspironaphthoxazine, ab initio molecular orbital (MO) calculations indicated that the most stable colored form is the trans-trans-cis- form - about 7 kcal-mol 1 endothermic relative to the spiro form. Measurement of the proton NMR nuclear Overhauser effect experimentally confirmed this calculated result. The structural calculations indicate that the colored form is essentially quinoidal, rather that zwitterionic.186... [Pg.63]

Laser spectroscopic studies of radioactive isotopes have proved to be a valuable source in obtaining nuclear properties. The continuing developments promise a way of meeting challenge in measuring nuclear properties far from stability. It may also be so that new isotopes are discovered by optical rather than nuclear methods. The extreme high precision measurements in ionic traps make rather small nuclear effects such as hype ne anomaly interesting for tx experimental and theoretical studies. In ad(Ution the theories of hyperfine structure and isotope shift are well understood, so that detailed information on nuclear properties can be extracted. [Pg.341]

The amount of computation necessary to try many conformers can be greatly reduced if a portion of the structure is known. One way to determine a portion of the structure experimentally is to obtain some of the internuclear distances from two-dimensional NMR experiments, as predicted by the nuclear Over-hauser effect (NOE). Once a set of distances are determined, they can be used as constraints within a conformation search. This has been particularly effective for predicting protein structure since it is very difficult to obtain crystallographic structures of proteins. It is also possible to define distance constraints based on the average bond lengths and angles, if we assume these are fairly rigid while all conformations are accessible. [Pg.185]

You can often use experimental data, such as Nuclear Overhauser Effect (NOE) signals from 2D NMR studies, as restraints. NOE signals give distances between pairs of hydrogens in a molecule. Use these distances to limit distances during a molecular mechanics geometry optimization or molecular dynamics calculation. Information on dihedral angles, deduced from NMR, can also limit a conformational search. [Pg.82]

A variety of experimental techniques have been employed to research the material of this chapter, many of which we shall not even mention. For example, pressure as well as temperature has been used as an experimental variable to study volume effects. Dielectric constants, indices of refraction, and nuclear magnetic resonsance (NMR) spectra are used, as well as mechanical relaxations, to monitor the onset of the glassy state. X-ray, electron, and neutron diffraction are used to elucidate structure along with electron microscopy. It would take us too far afield to trace all these different techniques and the results obtained from each, so we restrict ourselves to discussing only a few types of experimental data. Our failure to mention all sources of data does not imply that these other techniques have not been employed to good advantage in the study of the topics contained herein. [Pg.200]

Transuranic Waste. Transuranic wastes (TRU) contain significant amounts (>3,700 Bq/g (100 nCi/g)) of plutonium. These wastes have accumulated from nuclear weapons production at sites such as Rocky Flats, Colorado. Experimental test of TRU disposal is planned for the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, New Mexico. The geologic medium is rock salt, which has the abiUty to flow under pressure around waste containers, thus sealing them from water. Studies center on the stabiUty of stmctures and effects of small amounts of water within the repository. [Pg.232]

Although experimental studies of DNA and RNA structure have revealed the significant structural diversity of oligonucleotides, there are limitations to these approaches. X-ray crystallographic structures are limited to relatively small DNA duplexes, and the crystal lattice can impact the three-dimensional conformation [4]. NMR-based structural studies allow for the determination of structures in solution however, the limited amount of nuclear overhauser effect (NOE) data between nonadjacent stacked basepairs makes the determination of the overall structure of DNA difficult [5]. In addition, nanotechnology-based experiments, such as the use of optical tweezers and atomic force microscopy [6], have revealed that the forces required to distort DNA are relatively small, consistent with the structural heterogeneity observed in both DNA and RNA. [Pg.441]

The total energy in ab initio theory is given relative to the separated particles, i.e. bare nuclei and electrons. The experimental value for an atom is the sum of all the ionization potentials for a molecule there are additional contributions from the molecular bonds and associated zero-point energies. The experimental value for the total energy of H2O is —76.480 a.u., and the estimated contribution from relativistic effects is —0.045 a.u. Including a mass correction of 0.0028 a.u. (a non-Bom-Oppenheimer effect which accounts for the difference between finite and infinite nuclear masses) allows the experimental non-relativistic energy to be estimated at —76.438 0.003 a.u. ... [Pg.267]

In the case of the ASME codes for nuclear pressurised components, the questions of fatigue design and of flaw evaluation are dealt with separately in ASME Section III and Section XI Appendix A, respectively. The design S-A curve for machined butt welds typical of thick section pressurised components is set at a factor of two on stress range or twenty on cyclic life, whichever is more conservative, below the mean of S-N data developed on smooth cylindrical specimens in air. (A somewhat similar design curve obtained by a different method from experimental S-A data for machined butt welds is given in British Standard 5500.) These safety factors are intended to encompass any adverse influence of minor weld defects, size effects, data scatter and environment. As far as environmental effects are... [Pg.1323]

Fig. 1-16. Moseley plot for Ka2 lines. The curvature at high Z is due to a change in the effective nuclear charge (Z — 1). The insert shows the atomic number Z to be more fundamental than the atomic weight M. X-rays made possible the first experimental determinations of Z. Crosses = atomic weight dots = atomic number. Fig. 1-16. Moseley plot for Ka2 lines. The curvature at high Z is due to a change in the effective nuclear charge (Z — 1). The insert shows the atomic number Z to be more fundamental than the atomic weight M. X-rays made possible the first experimental determinations of Z. Crosses = atomic weight dots = atomic number.
The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper we review recent work in our laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper we review a more analytical approach we have developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations. [Pg.82]

A question of practical interest is the amount of electrolyte adsorbed into nanostructures and how this depends on various surface and solution parameters. The equilibrium concentration of ions inside porous structures will affect the applications, such as ion exchange resins and membranes, containment of nuclear wastes [67], and battery materials [68]. Experimental studies of electrosorption studies on a single planar electrode were reported [69]. Studies on porous structures are difficult, since most structures are ill defined with a wide distribution of pore sizes and surface charges. Only rough estimates of the average number of fixed charges and pore sizes were reported [70-73]. Molecular simulations of nonelectrolyte adsorption into nanopores were widely reported [58]. The confinement effect can lead to abnormalities of lowered critical points and compressed two-phase envelope [74]. [Pg.632]

In Section II, the basic equations of OCT are developed using the methods of variational calculus. Methods for solving the resulting equations are discussed in Section III. Section IV is devoted to a discussion of the Electric Nuclear Bom-Oppenhermer (ENBO) approximation [41, 42]. This approximation provides a practical way of including polarization effects in coherent control calculations of molecular dynamics. In general, such effects are important as high electric fields often occur in the laser pulses used experimentally or predicted theoretically for such processes. The limits of validity of the ENBO approximation are also discussed in this section. [Pg.45]


See other pages where Nuclear effects experimental is mentioned: [Pg.84]    [Pg.1649]    [Pg.350]    [Pg.145]    [Pg.95]    [Pg.46]    [Pg.366]    [Pg.41]    [Pg.63]    [Pg.182]    [Pg.99]    [Pg.227]    [Pg.224]    [Pg.96]    [Pg.253]    [Pg.397]    [Pg.360]    [Pg.1284]    [Pg.400]    [Pg.217]    [Pg.12]    [Pg.235]    [Pg.72]    [Pg.1132]    [Pg.208]    [Pg.261]    [Pg.129]    [Pg.141]    [Pg.431]    [Pg.7]    [Pg.103]    [Pg.277]    [Pg.165]    [Pg.244]    [Pg.113]    [Pg.604]    [Pg.37]   
See also in sourсe #XX -- [ Pg.416 ]




SEARCH



Experimenter effects

Nuclear effective

Nuclear effects

© 2024 chempedia.info