Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NO molecular beam

Kleyn and collaborators have investigated the oriented scattering of NO from Ag(lll) by passing a rotationally cold supersonic NO molecular beam through a hexapole field prior to scattering from the surface [166-169]. They observe that... [Pg.190]

Since this state is so low in energy, it is likely to be populated in the F atom beams typically used in scattering experiments (where pyrolysis or microwave/electrical discharges are used to generate F atoms), so the issue of its reactivity is important. The molecular beam experiments of Lee [43] and Toennies [45] showed no evidence for... [Pg.880]

There are relatively few examples of C-C bond formation on solid surfaces under UHV conditions. There are virtually no examples of catalytic C-C bond formation under such conditions. Perhaps the closest precedent for the present studies on reduced Ti02 can be found in the studies of Lambert et al. on single crystal Pd surfaces. Early UHV studies demonstrated that acetylene could be trimerized to benzene on the Pd(lll) surface in both TPD and modulated molecular beam experiments [9,10]. Subsequent studies by the same group and others [11,12] demonstrated that this reaction could be catalyzed at atmospheric pressure both by palladium single crystals and supported palladium catalysts. While it is not clear that catalysis was achieved in UHV, these and subsequent studies have provided valuable insights into the mechanism of this reaction as catalyzed by metals, including spectroscopic evidence for the hypothesized metallacyclopentadiene intermediates [10,13,14]. [Pg.298]

Syage JA, Pollard JE, Cohen RB. 1988. Ultrasensitive detection of atmospheric constituents by supersonic molecular beam, multiphoton ionization mass spectroscopy. El Segundo, CA Aerospace Corp. NTIS No. AD-A202-299. [Pg.154]

Abstract A review is provided on the contribution of modern surface-science studies to the understanding of the kinetics of DeNOx catalytic processes. A brief overview of the knowledge available on the adsorption of the nitrogen oxide reactants, with specific emphasis on NO, is provided first. A presentation of the measurements of NO, reduction kinetics carried out on well-characterized model system and on their implications on practical catalytic processes follows. Focus is placed on isothermal measurements using either molecular beams or atmospheric pressure environments. That discussion is then complemented with a review of the published research on the identification of the key reaction intermediates and on the determination of the nature of the active sites under realistic conditions. The link between surface-science studies and molecular computational modeling such as DFT calculations, and, more generally, the relevance of the studies performed under ultra-high vacuum to more realistic conditions, is also discussed. [Pg.67]

Although TPD is a versatile and useful technique widely available within the surface-science community, it does have some limitations. For one, because the experiments are carried out under vacuum, they can only probe irreversible reactions no readsorption of the desorbing products is possible. In addition, as the temperature is ramped during detection, the surface temperature and the reaction rates become coupled in a way difficult to separate or control. Of particular importance here is the fact that as the reactions proceed and the products desorb, the surface coverages decrease, so the rates at higher temperatures correspond to the new lower surface concentrations. In order to overcome this problem, isothermal kinetic experiments have been carried out using molecular beams [22,23],... [Pg.72]

The main focus of the molecular beam experiments has been to investigate the kinetic details of the catalytic reduction of NO in the presence of a reducing agent (most often CO) under isothermal steady-state conditions. This type of studies have been carried out on Rh(lll) [29], Rh(110) [30], and Pd(lll) [31] single-crystal surfaces. On Rh(lll), we have reported systematic studies as a function of surface temperature, NO + CO... [Pg.72]

Another approach to the determination of surface kinetics in these systems has been to combine molecular beams in the 10 2-10 1 mbar pressure range with the use of the infrared chemiluminescence of the C02 formed during steady-state NO + CO reactions. This methodology has been used to follow the kinetics of the reaction over Pd(110) and Pd(l 11) surfaces [49], The activity of the NO + CO reaction on Pd(l 10) was determined to be much higher than on Pd(lll), as expected based on the UHV work discussed in previous sections but in contrast with result from experiments under higher pressures. On the basis of the experimental data on the dependence of the reaction rate on CO and NO pressures, the coverages of NO, CO, N, and O were calculated under various flux conditions. Note that this approach relied on the detection of the evolution of gas-phase... [Pg.77]

The effect of oxidizing atmospheres on the reduction of NO over rhodium surfaces has been investigated by kinetic and IR characterization studies with NO + CO + 02 mixtures on Rh(lll) [63], Similar kinetics was observed in the absence of oxygen in the gas phase, and the same adsorbed species were detected on the surface as well. This result contrasts with that from the molecular beam work [44], where 02 inhibits the reaction, perhaps because of the different relative adsorption probabilities of the three gas-phase species in the two types of experiments. On the other hand, it was also determined that the consumption of 02 is rate limited by the NO + CO adsorption-desorption... [Pg.81]

Figure 3.8. Kinetic data from molecular beam experiments with NO + CO mixtures on a Pd/MgO(100) model catalyst [70]. The upper panel displays raw steady-state C02 production rates from the conversion of Pco = PN0 = 3.75 x 10-8 mbar mixtures as a function of the sample temperature on three catalysts with different average particle size (2.8, 6.9, and 15.6 nm), while the bottom panel displays the effective steady-state NO consumption turnover rates estimated by accounting for the capture of molecules in the support. After this correction, which depends on particle size, the medium-sized particles appear to be the most active for the NO conversion. (Reproduced with permission from Elsevier, Copyright 2000). Figure 3.8. Kinetic data from molecular beam experiments with NO + CO mixtures on a Pd/MgO(100) model catalyst [70]. The upper panel displays raw steady-state C02 production rates from the conversion of Pco = PN0 = 3.75 x 10-8 mbar mixtures as a function of the sample temperature on three catalysts with different average particle size (2.8, 6.9, and 15.6 nm), while the bottom panel displays the effective steady-state NO consumption turnover rates estimated by accounting for the capture of molecules in the support. After this correction, which depends on particle size, the medium-sized particles appear to be the most active for the NO conversion. (Reproduced with permission from Elsevier, Copyright 2000).
Figure 3.9. Transient C02 formation rates on Pd30 (a) and Pd8 (b) mass-selected clusters deposited on a MgO(lOO) film at different reaction temperatures [74]. In these experiments CO was dosed from the gas background while NO was dosed via a pulsed nozzle molecular beam source. The turnover frequencies (TOFs) calculated from the experiments displayed in (a) and (b) are displayed in the last panel (c). C02 formation starts at lower temperatures but reaches lower maximum rates on the larger cluster. (Figure provided by Professor Heiz and reproduced with permission from Elsevier, Copyright 2005). Figure 3.9. Transient C02 formation rates on Pd30 (a) and Pd8 (b) mass-selected clusters deposited on a MgO(lOO) film at different reaction temperatures [74]. In these experiments CO was dosed from the gas background while NO was dosed via a pulsed nozzle molecular beam source. The turnover frequencies (TOFs) calculated from the experiments displayed in (a) and (b) are displayed in the last panel (c). C02 formation starts at lower temperatures but reaches lower maximum rates on the larger cluster. (Figure provided by Professor Heiz and reproduced with permission from Elsevier, Copyright 2005).
Gopinath, C. S. and Zaera, F. (2000) Transient kinetics during the isothermal reduction of NO by CO on Rh(lll) as studied with effusive collimated molecular beams , J. Phys. Chem. B, 104, 3194. [Pg.93]

Perhaps the first clear observation of a reactive resonance in a collision experiment was recently made for the F + HD —> HF + D reaction.65-67 This reaction was one isotopomer of the F + H2 system studied in the landmark molecular beam experiments of Lee and co-workers in 1985.58 Unlike the F + H2 case, no anomalous forward peaking of the product states was reported, and results for F + HD were described as the most classical-like of the isotopes considered. Furthermore, a detailed quantum mechanical study68 of F + HD —> HF + D reaction on the accurate Stark-Werner (SW)-PES69 failed to locate resonance states. Therefore, it was surprising that the unmistakable resonance fingerprints emerged so clearly upon re-examination of this reaction. [Pg.60]

In summary, the H + HD reaction shows little sign of resonance scattering in the ICS. Furthermore, the product distributions without angle resolution show no unusual behavior as functions of energy that might indicate resonance behavior. On the other hand, the forward peaking in the angular product distribution does appear to reveal resonance structure. Since time-delay analysis is at present not possible in a molecular beam experiment, it is the combination of a sharp forward peak with the unusual... [Pg.78]

Some of the earliest experimental studies of neutral transition metal atom reactions in the gas phase focused on reactions with oxidants (OX = O2, NO, N2O, SO2, etc.), using beam-gas,52,53 crossed molecular beam,54,55 and flow-tube techniques.56 A few reactions with halides were also studied. Some of these studies were able to obtain product rovibrational state distributions that could be fairly well simulated using various statistical theories,52,54,55 while others focused on the spectroscopy of the MO products.53 Subsequently, rate constants and activation energies for reactions of nearly all the transition metals and all the lanthanides with various oxidant molecules... [Pg.220]

The present section on ES method and mechanism and MS detection is based on two previous reviews of the subject316,36 and the reader interested in details and additional references in the literature might find these reviews useful. In the present account, we include information aimed at the investigator who is interested in performing physical measurements on ions produced by ES. We became convinced that a minimum of mechanistic information is necessaiy, on the basis of a personal experience. Some years ago, we persuaded a scientific colleague working with molecular beams to try to study ions produced by ES. He was enthusiastic about the possibilities and took off with modifications of his apparatus. Some months later he reported his disappointment. He needed the ions to be in helium gas and tried ES in helium. He saw no ions and gave up. We hope that the present account will show him why he could not observe ions in He and how to go about to obtain ions in helium. [Pg.262]


See other pages where NO molecular beam is mentioned: [Pg.187]    [Pg.402]    [Pg.402]    [Pg.128]    [Pg.187]    [Pg.402]    [Pg.402]    [Pg.128]    [Pg.880]    [Pg.908]    [Pg.2440]    [Pg.270]    [Pg.305]    [Pg.242]    [Pg.222]    [Pg.291]    [Pg.72]    [Pg.73]    [Pg.74]    [Pg.75]    [Pg.79]    [Pg.79]    [Pg.82]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.90]    [Pg.93]    [Pg.93]    [Pg.93]    [Pg.94]    [Pg.95]    [Pg.296]    [Pg.45]    [Pg.60]    [Pg.68]    [Pg.387]    [Pg.505]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Molecular beam

© 2024 chempedia.info