Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen aprotic

A simpler nonphosgene process for the manufacture of isocyanates consists of the reaction of amines with carbon dioxide in the presence of an aprotic organic solvent and a nitrogeneous base. The corresponding ammonium carbamate is treated with a dehydrating agent. This concept has been apphed to the synthesis of aromatic and aUphatic isocyanates. The process rehes on the facile formation of amine—carbon dioxide salts using acid haUdes such as phosphoryl chloride [10025-87-3] and thionyl chloride [7719-09-7] (30). [Pg.448]

Most organic reactions are done in solution, and it is therefore important to recognize some of the ways in which solvent can affect the course and rates of reactions. Some of the more common solvents can be roughly classified as in Table 4.10 on the basis of their structure and dielectric constant. There are important differences between protic solvents—solvents fliat contain relatively mobile protons such as those bonded to oxygen, nitrogen, or sulfur—and aprotic solvents, in which all hydrogens are bound to carbon. Similarly, polar solvents, those fliat have high dielectric constants, have effects on reaction rates that are different from those of nonpolar solvent media. [Pg.237]

Sodium acetate reacts with /p-nitrophenyl benzoates to give mixed anhydrides if the reaction is conducted in a polar aprotic solvent in the presence of a crown ether. The reaction is strongly accelerated by quartemary nitrogen groups substituted at the orthc position. Explain the basis for the enhanced reactivity of these compounds. [Pg.500]

Nitrite ion, an ainbident nucleophile in aprotic solvents, favors nitrogen atom attack on the double bond of various fluoro(halo)olefins. 2-Monohydroperfluoro-nitroalkanes can thus be produced [5] (equation 5)... [Pg.388]

It is postulated that hydrogen-bonded cyclic transition states such as 62 or the analogous one involving H0CH2CH20 will be found to increase relative reactivity adjacent to the azine-nitrogen in aprotic solvents cf. also Sections II,E,2,e and II,F. [Pg.186]

A hydrogen-bonded cyclic transition state can be postulated for a nucleophile like ethanolamine or ethylene glycol anion whose hydrogen bonding to an azine-nitrogen in aprotic solvents can facilitate reaction via a cyclic transition state such as 78, cf. Section II, F. Ethanolamine is uniquely reactive with 2-chloronitrobenzene by virtue of a cyclic solvate (17) of the leaving group, a postulate in line with kinetic evidence. [Pg.189]

When an aprotic solvent is used, the reaction proceeds via an intermediate carbene 6. In the absence of a proton donor, a diazonium ion cannot be formed and the diazo compound 3 loses nitrogen to give the carbene 6 ... [Pg.23]

Table 6-4. Association constants for complexes between carboxylic acids and nitrogen bases in aprotic solvents and corresponding association constants and site densities for binding of the base to a molecu-larly imprinted polymer. Table 6-4. Association constants for complexes between carboxylic acids and nitrogen bases in aprotic solvents and corresponding association constants and site densities for binding of the base to a molecu-larly imprinted polymer.
These reactions occur with similar rates to those carried out in dipolar aprotic solvents such as DMF or DMSO. An advantage of using the room-temperature ionic liquid for this reaction is that the lower reaction temperatures result in higher selec-tivities for substitution on the oxygen or nitrogen atoms. The by-product (sodium or potassium halide) of the reaction can be extracted with water and the ionic liquid recycled. [Pg.185]

The conductometric results of Meerwein et al. (1957 b) mentioned above demonstrate that, in contrast to other products of the coupling of nucleophiles to arenediazonium ions, the diazosulfones are characterized by a relatively weak and polarized covalent bond between the p-nitrogen and the nucleophilic atom of the nucleophile. This also becomes evident in the ambidentate solvent effects found in the thermal decomposition of methyl benzenediazosulfone by Kice and Gabrielson (1970). In apolar solvents such as benzene or diphenylmethane, they were able to isolate decomposition products arising via a mechanism involving homolytic dissociation of the N — S bond. In a polar, aprotic solvent (acetonitrile), however, the primary product was acetanilide. The latter is thought to arise via an initial hetero-lytic dissociation and reaction of the diazonium ion with the solvent (Scheme 6-11). [Pg.118]

Phosphines behave similarly, and compounds of the type R3P and R4P X can be so prepared. The reaction between triphenylphosphine and quaternary salts of nitrogen heterocycles in an aprotic solvent is probably the best way of dealkylating the heterocycles, for example, ... [Pg.501]

The electrochemical reduction and oxidation of sulfur and of polysulfide dianions at inert electrodes has been studied in aprotic solvents and in liquid ammonia. In the latter case, sulfur-nitrogen compounds are involved and these systems [90] will not be discussed here. [Pg.141]

Blatz and Mohler38 have performed 2D NOE NMR experiments on the protonated f-butylamine Schiff base of all-fraws-retinal using different counterions, each carrying at least one nonexchangeable proton. The study has indicated that a proton on the counterion molecule is spatially close, in aprotic solvents, to the protons of the chromophore near the positively charged nitrogen. It has also shown that the ion-pair formation is relaxed in either the presence of excess carboxylic acid (the counterion) or when using methanol as a solvent. [Pg.91]


See other pages where Nitrogen aprotic is mentioned: [Pg.300]    [Pg.300]    [Pg.199]    [Pg.89]    [Pg.379]    [Pg.389]    [Pg.133]    [Pg.438]    [Pg.190]    [Pg.159]    [Pg.240]    [Pg.183]    [Pg.288]    [Pg.293]    [Pg.294]    [Pg.120]    [Pg.91]    [Pg.276]    [Pg.347]    [Pg.232]    [Pg.276]    [Pg.20]    [Pg.253]    [Pg.179]    [Pg.313]    [Pg.327]    [Pg.39]    [Pg.235]    [Pg.54]    [Pg.311]    [Pg.263]    [Pg.398]    [Pg.1272]    [Pg.1285]    [Pg.90]    [Pg.242]    [Pg.54]    [Pg.134]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Aprotic

© 2024 chempedia.info