Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitroalkenes aldehyde additions

This transformation proved to be rather general with respect to the enoliz-able aldehyde and the enal, with higher yields obtained when aliphatic a,p-unsaturated aldehydes were employed. On the other hand, all the nitroalkenes tested were nitrostyrene derivatives, with no data provided with regard to the use of the more problematic aliphatic nitroalkenes. In addition, several selective transformations were carried out on the compounds obtained by this methodology, therefore proving the possibility of chemical manipulation of the different functionalities present in their structure. A version involving the use of recyclable polystyrene-supported prolinol-based catalysts has also been reported furnishing similar yields to those obtained by Enders in solution for a comparative example. [Pg.252]

The stereochemical outcome of the addition of lithium enolates of aldehydes and ketones to nitroalkenes is dependent upon the geometry of the nitroalkene and the enolate anion. The synjanti selectivity in the reaction of the lithium enolates of propanal, eyelopentanone and cyclohexanone with ( )- and (Z)-l-nitropropene has been reported1. [Pg.1011]

The addition of alkoxides to 2-nitro-l-phenylthio-l-alkenes affords P-nitro-aldehyde acetals.276 The reaction of the same nitroalkenes with amines gives nitroenamines.270 They are important intermediates for organic synthesis and are generally prepared by the reaction of nitroalkanes with triethylorthoformate in the presence of alcohols or secondary amines.2"1 0 The methods of Eqs. 4.20 and 4.21 have some merits over the conventional methods, for variously substituted (3-nitro-aldehydes acetals or nitroenamines are readily prepared by these methods. [Pg.76]

Barrett and coworkers have explored hetero-substituted nitroalkenes in organic synthesis. The Michael addition of nucleophiles to 1-alkoxynitroalkenes or 1-phenylthionitroalkenes followed by oxidative Nef reaction (Section 6.1) using ozone gives a-substituted esters or thiol esters, respectively.41 As an alternative to nucleophilic addition to l-(phenylthio)-nitroalkenes, Jackson and coworkers have used the reaction of nucleophiles with the corresponding epoxides (Scheme 4.4).42 Because the requisite nitroalkenes are readily prepared by the Henry reaction (Chapter 3) of aldehydes with phenylthionitromethane, this process provides a convenient tool for the conversion of aldehydes into ot-substituted esters or thiol esters. [Pg.80]

The conversion of primary or secondary nitro compounds into aldehydes or ketones is normally accomplished by use of the Nef reaction, which is one of the most important transformations of nitro compounds. Various methods have been introduced forthis transformation (1) treatment of nitronates with acid, (2) oxidation of nitronates, and (3) reduction of nitroalkenes. Although a comprehensive review is available,3 important procedures and improved methods published after this review are presented in this chapter. The Nef reaction after the nitro-aldol (Henry reaction), Michael addition, or Diels-Alder reaction using nitroalkanes or nitroalkenes has been used extensively in organic synthesis of various substrates, including complicated natural products. Some of them are presented in this chapter other examples are presented in the chapters discussing the Henry reaction (Chapter 3), Michael addition (Chapter 4), and Diels-Alder reaction (Chapter 8). [Pg.159]

Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

The thiazolium-catalyzed addition of an aldehyde-derived acyl anion with a Michael acceptor (Stetter reaction) is a well-known synthetic tool leading to the synthesis of highly funtionalized products. Recent developments in this area include the direct nucleophilic addition of acyl anions to nitroalkenes using silyl-protected thiazolium carbinols <06JA4932>. In the presence of a fluoride anion, carbinol 186 is not cleaved to an aldehyde... [Pg.258]

Besides rhodium catalysts, palladium complex also can catalyze the addition of aryltrialkoxysilanes to a,(3-unsaturated carbonyl compounds (ketones, aldehydes) and nitroalkenes (Scheme 60).146 The addition of equimolar amounts of SbCl3 and tetrabutylammonium fluoride (TBAF) was necessary for this reaction to proceed smoothly. The arylpalladium complex, generated by the transmetallation from a putative hypercoordinate silicon compound, was considered to be the catalytically active species. [Pg.395]

Nitroalkanols are intermediate compounds that are used extensively in many important syntheses 142). They can be converted by hydrogenation into / -aminoalcohols, which are intermediates for pharmacologically important chemicals such as chloroamphenicol and ephedrine. They are obtained by Henry s reaction by the condensation of nitroalkanes with aldehydes. The classical method for this transformation involves the use of bases such as alkali metal hydroxides, alkoxides, Ba(OH)2, amines, etc. 142-144). However, these catalysts give predominantly dehydrated products—nitroalkenes— which are susceptible to polymerization (Scheme 16). The reaction proceeds by the nucleophilic addition of the carbanion formed by the abstraction of a proton from the nitro compound to the carbon atom of the carbonyl group, finally forming the nitroaldol by abstraction of a proton from the catalyst. [Pg.260]

Scheme 6.103 Representative products provided from the 100-catalyzed asymmetric Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes. Scheme 6.103 Representative products provided from the 100-catalyzed asymmetric Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes.
Scheme 6.104 Key intermediates of the proposed catalytic cycle for the 100-catalyzed Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes Formation of imine (A) and F-enamine (B), double hydrogen-bonding activation of the nitroalkene and nucleophilic enamine attack (C), zwitterionic structure (D), product-forming proton transfer, and hydrolysis. Scheme 6.104 Key intermediates of the proposed catalytic cycle for the 100-catalyzed Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes Formation of imine (A) and F-enamine (B), double hydrogen-bonding activation of the nitroalkene and nucleophilic enamine attack (C), zwitterionic structure (D), product-forming proton transfer, and hydrolysis.
The nitroaldol may be dehydrated to a nitroalkene in the case of nitroaldols arising from aromatic aldehydes this dehydration reaction occurs spontaneously as is illustrated in the preparation of co-nitrostyrene (Expt 6.136). The nitroalkenes are important dienophiles in the Diels-Alder reaction (Section 7.6, p. 1117). An example of the Michael addition reaction is illustrated in the syn-... [Pg.768]

Thiamine-catalyzed transformations are reversible, thus TV,/V-dialkyl hydrazones were selected as alternative acyl anion equivalents that were reported to react with electrophiles without acidic activation.41 One especially reactive example, formaldehyde hydrazone resin 13, was constructed from polymer-supported hydrazines and was employed in the first polymer-supported, uncatalyzed acyl anion additions (Fig. 8).38 As test substrates, nitroalkenes (as Michael acceptors) and activated aldehydes were selected. Reactivity of these acyl anion equivalents depended critically not only on the nature of the starting hydrazine, but also on the protocol for hydrazine formation. [Pg.384]

Direct catalytic Michael addition of aldehydes to nitrostyrenes proceeds in good yield, syn diastereoselectivity, and enantioselectivity (up to 82/90/99%, respectively) using a recyclable dendritic catalyst bearing chiral pyrrolidine moieties.200 High-yielding enantio- and diastereo-selective direct Michael addition of ketones to nitroalkenes to give aldol products employ modular acyclic primary amino acid derivatives as catalysts.201... [Pg.26]

The catalytic application of L-proline in the asymmetric Michael addition of unmodified aldehydes or ketones with nitroalkenes in ionic liquids has been studied. The ... [Pg.346]

Pyrrole synthesis. A new route to pyrroles1,2 is based on a base-catalyzed Michael addition of an alkyl isocyanoacetate to a nitroalkene to give an intermediate that cyclizes to a pyrrole. The nitroalkene is generally obtained from a P-acetoxy nitroalkane (1), prepared by a nitro aldol reaction of an aldehyde with a nitroalkane. The synthesis of ethyl 3,4-diethylpyrrole-2-carboxylate (2) is typical. [Pg.164]

This catalytic cascade was first realized using propanal, nitrostyrene and cinnamaldehyde in the presence of catalytic amounts of (9TMS-protected diphenylprolinol ((.S )-71,20 mol%), which is capable of catalyzing each step of this triple cascade. In the first step, the catalyst (S)-71 activates component A by enamine formation, which then selectively adds to the nitroalkene B in a Michael-type reaction (Hayashi et al. 2005). The following hydrolysis liberates the catalyst, which is now able to form the iminium ion of the a, 3-unsaturated aldehyde C to accomplish in the second step the conjugate addition of the nitroalkane (Prieto et al. 2005). In the subsequent third step, a further enamine reactivity of the proposed intermediate leads to an intramolecular aldol condensation. Hydrolysis returns the catalyst for further cycles and releases the desired tetrasubstituted cyclohexene carbaldehyde 72 (Fig. 8) (Enders and Hiittl 2006). [Pg.77]

Denmark reported a protocol for the formation of 3-substituted azepines 4 from nitro acylsilanes 3, which were formed by the conjugate addition of an acylsilane-derived dienol-ether 2 to nitroalkenes 1 <07JOC7050>. The reaction of the nitro acylsilane with aluminium-amalgam gave a mixture of azepines and lactams, however, this was overcome by conversion of the acylsilane to an aldehyde prior to the reductive cyclisation. [Pg.432]


See other pages where Nitroalkenes aldehyde additions is mentioned: [Pg.6]    [Pg.91]    [Pg.224]    [Pg.80]    [Pg.306]    [Pg.164]    [Pg.369]    [Pg.224]    [Pg.35]    [Pg.224]    [Pg.333]    [Pg.491]    [Pg.159]    [Pg.247]    [Pg.247]    [Pg.190]    [Pg.353]    [Pg.836]    [Pg.206]    [Pg.100]    [Pg.135]    [Pg.145]    [Pg.152]    [Pg.45]    [Pg.354]    [Pg.355]    [Pg.86]    [Pg.59]    [Pg.254]    [Pg.60]   
See also in sourсe #XX -- [ Pg.34 , Pg.41 , Pg.70 ]




SEARCH



Addition aldehydes

Aldehydes nitroalkenes

Nitroalkene

Nitroalkenes

© 2024 chempedia.info