Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oximes nitro compounds

The imides, primaiy and secondary nitro compounds, oximes and sulphon amides of Solubility Group III are weakly acidic nitrogen compounds they cannot be titrated satisfactorily with a standard alkaU nor do they exhibit the reactions characteristic of phenols. The neutral nitrogen compounds of Solubility Group VII include tertiary nitro compounds amides (simple and substituted) derivatives of aldehydes and ketones (hydrazones, semlcarb-azones, ete.) nitriles nitroso, azo, hydrazo and other Intermediate reduction products of aromatic nitro compounds. All the above nitrogen compounds, and also the sulphonamides of Solubility Group VII, respond, with few exceptions, to the same classification reactions (reduction and hydrolysis) and hence will be considered together. [Pg.1074]

Catalytic cleavage of the nitrogen-oxygen bond occurs very frequently as in reduction of nitro compounds, oximes, and various heterocyclics these reactions are discussed in separate chapters. Considered here are N-oxides, hydroxylamincs, and N- and C-nitroso compounds. [Pg.171]

The lower members of the homologous series of 1. Alcohols 2. Aldehydes 3. Ketones 4. Acids 5. Esters 6. Phenols 7. Anhydrides 8. Amines 9. Nitriles 10. Polyhydroxy phenols 1. Polybasic acids and hydro-oxy acids. 2. Glycols, poly-hydric alcohols, polyhydroxy aldehydes and ketones (sugars) 3. Some amides, ammo acids, di-and polyamino compounds, amino alcohols 4. Sulphonic acids 5. Sulphinic acids 6. Salts 1. Acids 2. Phenols 3. Imides 4. Some primary and secondary nitro compounds oximes 5. Mercaptans and thiophenols 6. Sulphonic acids, sulphinic acids, sulphuric acids, and sul-phonamides 7. Some diketones and (3-keto esters 1. Primary amines 2. Secondary aliphatic and aryl-alkyl amines 3. Aliphatic and some aryl-alkyl tertiary amines 4. Hydrazines 1. Unsaturated hydrocarbons 2. Some poly-alkylated aromatic hydrocarbons 3. Alcohols 4. Aldehydes 5. Ketones 6. Esters 7. Anhydrides 8. Ethers and acetals 9. Lactones 10. Acyl halides 1. Saturated aliphatic hydrocarbons Cyclic paraffin hydrocarbons 3. Aromatic hydrocarbons 4. Halogen derivatives of 1, 2 and 3 5. Diaryl ethers 1. Nitro compounds (tertiary) 2. Amides and derivatives of aldehydes and ketones 3. Nitriles 4. Negatively substituted amines 5. Nitroso, azo, hy-drazo, and other intermediate reduction products of nitro com-pounds 6. Sulphones, sul-phonamides of secondary amines, sulphides, sulphates and other Sulphur compounds... [Pg.1052]

Ambident anions are mesomeric, nucleophilic anions which have at least two reactive centers with a substantial fraction of the negative charge distributed over these cen-ters ) ). Such ambident anions are capable of forming two types of products in nucleophilic substitution reactions with electrophilic reactants . Examples of this kind of anion are the enolates of 1,3-dicarbonyl compounds, phenolate, cyanide, thiocyanide, and nitrite ions, the anions of nitro compounds, oximes, amides, the anions of heterocyclic aromatic compounds e.g. pyrrole, hydroxypyridines, hydroxypyrimidines) and others cf. Fig. 5-17. [Pg.269]

Two novel complex hydrides are likely to find applications in steroid chemistry lithium perhydro-9b-boraphen yl hydride affords unusually high proportions of axial alcohols in model compounds sodium bis(methoxyethoxy)aluminium dihydride, Na (MeOCH2CH20)JAlH2, a very safe and convenient substitute for lithium aluminium hydride, readily reduces not only ketones but also acids, nitro-compounds, oximes, amides, lactones, etc. An improved procedure for Clemmensen reduction of steroid ketones involves saturating an ethereal solution with hydrogen chloride while stirring with zinc. 5a-Cholestane was obtained from the 3-one in 89% yield. ... [Pg.319]

Primary nitro compound intense red colour, disappearing upon acidification. The colouration is that of the alkali salt of the nitrolic acid (nitro oxime) -... [Pg.531]

Dilute sodium hydroxide solution. Carboxylic acids (RCOOH), sulphonic acids (RSO3H), phenols (ArOH), thiophenols (ArSH), mer-captans (RSH), imides (RCONHCOR), aryl sulphonamides (AxSOjNHj), arylsulphonyl derivatives of primary amines (AxSOjNHR), oximes (RCH=NOH), primary and secondary nitro compounds (RCH=NOOH and RjC=NOOH-oci forms), and some enols (e.g., of 1 3-diketones... [Pg.1048]

Formic acid is a good reducing agent in the presence of Pd on carbon as a catalyst. Aromatic nitro compounds are reduced to aniline with formic acid[100]. Selective reduction of one nitro group in 2,4-dinitrotoluene (112) with triethylammonium formate is possible[101]. o-Nitroacetophenone (113) is first reduced to o-aminoacetophenone, then to o-ethylaniline when an excess of formate is used[102]. Ammonium and potassium formate are also used for the reduction of aliphatic and aromatic nitro compounds. Pd on carbon is a good catalyst[103,104]. NaBH4 is also used for the Pd-catalyzed reduction of nitro compounds 105]. However, the ,/)-unsaturated nitroalkene 114 is partially reduced to the oxime 115 with ammonium formate[106]... [Pg.541]

Because thiols are easily oxidized, a host of organic and inorganic oxidants may be used. Mild oxidants such as oximes, nitro compounds, or air can be effective. Various oxidants have been used in special appHcations, but only a few are used in large-scale appHcations. [Pg.456]

AletalHydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aUphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

Hypochlorous acid adds to oximes of cyclic ketones forming intermediate a-chloronitroso compounds that can be converted to nitro compounds (108). [Pg.467]

Catalytic reduction of fluormated aliphatic and aromatic nitro compounds to give oximes and amines was described previously, as was the use of dissolving metals to prepare amines [Si] Refmement of these techniques has resulted in optimized yields and, as indicated in equations 69 and 70, in selective reductions [S6, 87]... [Pg.313]

The presence of nitrogen may indicate an ammonium salt, ori auib base amine or alkaloid), amino add, amide, tya/dde, socy(7nide, oxime, nitroso- or nitro-compound, azo-tomponitd, etc. [Pg.324]

Two different sets of experimental conditions have been used. Buu-Hoi et al. and Hansen have employed the method introduced by Papa et using Raney nickel alloy directly for the desulfurization in an alkaline medium. Under these conditions most functional groups are removed and this method is most convenient for the preparation of aliphatic acids. The other method uses Raney nickel catalysts of different reactivity in various solvents such as aqueous ammonia, alcohol, ether, or acetone. The solvent and activity of the catalyst can have an appreciable influence on yields and types of compounds formed, but have not yet been investigated in detail. In acetic anhydride, for instance, desulfurization of thiophenes does not occur and these reaction conditions have been employed for reductive acetylation of nitrothiophenes. Even under the mildest conditions, all double bonds are hydrogenated and all halogens removed. Nitro and oxime groups are reduced to amines. [Pg.108]

Reaction of nitromalon-bis-A -methylanilide (105) with sulfuric acid gives A -methylisatin- -oxime (107) and not 4-methylquinoxalin-3-one 1-oxide (108) as originally suggested. This transformation may involve a Beckmann-type rearrangement of the protonated aci-nitro compound (106) prior to dehydrative ring closure. ... [Pg.238]

Conversion of carbonyl to nitro groups fretro Nef Reacdoni is tin importiint method for the preparadon of nitro compounds. Such conversion is generally effected vii oximes using strong oxidiints such as CF-vCOaH. [Pg.21]

Various convenient methods for the oxidadon of oximes to nitro compounds have beo) developed in recent years. Olah has reported a convenient oxidadon of oximes to nitro compounds v/ith soditun perborate in glaciid acedc acid fEq. 2.60. ... [Pg.21]

Indirect conversion of oximes to nitro compounds viact-halo nitro compounds has provided a useful method for synthesis of nitro compounds, as shown m Scheme 2 1... [Pg.23]

Photoredncdon of aromadc and aliphadc nitro compounds gives hydtoxylamines or amines, which is well reviewed The radicid reacdon of primary nitro compounds v/ith dn hydnde does not give the denitrated product fsee Chapter 7, but give the corresponding oximes fEq... [Pg.177]

As discussed in Chapter 6, nitro compounds are converted into amines, oximes, or carbonyl compounds. They serve as usefid starting materials for the preparation of various heterocyclic compounds. Especially, five-membered nitrogen heterocycles, such as pyrroles, indoles, ind pyrrolidines, are frequently prepared from nitro compounds. Syntheses of heterocyclic compounds using nitro compounds are described partially in Chapters 4, 6 and 9. This chapter focuses on synthesis of hetero-aromadcs fmainly pyrroles ind indolesi ind saturated nitrogen heterocycles such as pyrrolidines ind their derivadves. [Pg.325]

Reductive alkylations have been carried out successfully with compounds that are not carbonyls or amines, but which are transformed during the hydrogenation to suitable functions. Azides, azo, hydrazo, nitro and nitroso compounds, oximes, pyridines, and hydroxylamines serve as amines phenols, acetals, ketals, or hydrazones serve as carbonyls 6,7,8,9,12,17,24,41,42,58). Alkylations using masked functions have been successful at times when use of unmasked functions have failed (2). In a synthesis leading to methoxatin, a key... [Pg.88]

Aromatic nitro compounds are hydrogenated very easily aliphatic nitro compounds considerably more slowly. Hydrogenations have been carried out successfully under a wide range of conditions including vapor phase (S9). Usually the goal of reduction is the amine, but at times the reduction is arrested at the intermediate hydroxylamine or oxime stage nitroso compounds never accumulate, although their transient presence may appreciably influence the course of reaction. In practice, nitro compounds often contain other reducible functions that are to be either maintained or reduced as well. [Pg.104]

Arylisoxazol-5(4//)-oncs 21 react with benzene-1,2-diamines to yield 4-aryl-l,5-benzodiaze-pinones 22 by elimination of hydroxylamine from the intermediate oximes. Unsymmetrically substituted benzene-1,2-diamines are attacked at the more nucleophilic amino group. Thus, 4-methylbenzene-1,2-diamine gives 7-methylbenzodiazepinones 22f-h, whereas 4-nitrobenzene-1,2-diamine gives 8-nitro compounds 22k-n. The benzodiazepinones are accompanied by minor amounts of 2-methylbenzimidazoles 23. Selected examples are given.275... [Pg.423]

The radical alkylation of ketones is achieved by their conversion into the desired N-silyloxy enamines 81 (Scheme 13). The reaction of 81 with diethyl bromomalonate in the presence of EtsB (0.5 equiv) in benzene was performed in open air and stirred at room temperature for 3h. With nitro compounds it is achieved by their conversion into the desired ]V-bis(silyloxy)enamines (82) (Scheme 13). When the reaction is carried out with 82 and alkyl iodides with an electron-withdrawing substituent at the a-position, using V-70 as radical initiator (2,2 -azobis(4-methoxy-2,4-dimethylvaleronitrile)), it underwent a clean radical alkylation reaction to yield an oxime ether. Successful radical alkylation of... [Pg.150]

The nitro form is much more stable than the aci form in sharp contrast to the parallel case of nitroso-oxime tautomerism, undoubtedly because the nitro form has resonance not found in the nitroso case. Aci forms of nitro compounds are also called nitronic acids and azinic acids. [Pg.76]

The conjugate bases of nitro compounds (formed by treatment of the nitro compound with BuLi) react with Grignard reagents in the presence of C1CH= NMe Cr to give oximes RCH =N(0)0Li + R MgX RR C=NOH. ... [Pg.1216]

Oxidation of Primary Amines, Oximes, Azides, Isocyanates, or Nitroso Compounds to Nitro Compounds... [Pg.1539]


See other pages where Oximes nitro compounds is mentioned: [Pg.1074]    [Pg.1074]    [Pg.1214]    [Pg.1214]    [Pg.133]    [Pg.276]    [Pg.1074]    [Pg.1074]    [Pg.144]    [Pg.228]    [Pg.1074]    [Pg.1074]    [Pg.1214]    [Pg.1214]    [Pg.133]    [Pg.276]    [Pg.1074]    [Pg.1074]    [Pg.144]    [Pg.228]    [Pg.127]    [Pg.277]    [Pg.306]    [Pg.119]    [Pg.469]    [Pg.71]    [Pg.159]    [Pg.167]    [Pg.170]    [Pg.23]   
See also in sourсe #XX -- [ Pg.69 , Pg.70 ]

See also in sourсe #XX -- [ Pg.11 , Pg.156 ]




SEARCH



Nitro compounds oxime synthesis

Nitro compounds via N-oxidation of oximes

Nitro-compounds, aliphatic from oximes

Oximes compounds

Oximes from nitro compounds

Reduction of nitro compounds and oximes to hydroxylamines

Tautomerism, nitro compounds nitroso-oxime

© 2024 chempedia.info