Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles equivalents

A novel use of this general method is the addition of an aromatic nitrile oxide to the nitrile equivalent tied up in the triazine (184). The reaction occurs to give a good yield only in the presence of boron trifluoride etherate whose role is illustrated in Scheme 18 (78BCJ1484).. ... [Pg.389]

Reactions with in situ Generated Nitrile Equivalents... [Pg.291]

Generation of the nitrile or a nitrile equivalent has been successfully utilized for tetrazole formation. For example, reaction of an amine 70 with an orthoformate in the presence of NaNa and ln(OTf)3 was proposed to provide the azido-imine (Finnegan intermediate 22), which cyclized to the tetrazole 71. These conditions also proved general for a range of amines and provided the 1 -substituted-5//-tetrazole. ... [Pg.292]

Difficultly hydrolysable nitriles, such as o-tolunitrile, require 30 per cent hydrogen peroxide. For most nitriles, however, both aromatic and aliphatic, an equivalent amount of 6-12 per cent, hydrogen peroxide gives more satisfactory results the above procedure must, however, be modified, according to the solubility of the nitriles and amides. [Pg.798]

In the first method a secondary acetylenic bromide is warmed in THF with an equivalent amount of copper(I) cyanide. We found that a small amount of anhydrous lithium bromide is necessary to effect solubilization of the copper cyanide. Primary acetylenic bromides, RCECCH Br, under these conditions afford mainly the acetylenic nitriles, RCsCCHjCsN (see Chapter VIII). The aqueous procedure for the allenic nitriles is more attractive, in our opinion, because only a catalytic amount of copper cyanide is required the reaction of the acetylenic bromide with the KClV.CuCN complex is faster than the reaction with KCN. Excellent yields of allenic nitriles can be obtained if the potassium cyanide is added at a moderate rate during the reaction. Excess of KCN has to be avoided, as it causes resinifi-cation of the allenic nitrile. In the case of propargyl bromide 1,1-substitution may also occur, but the propargyl cyanide immediately isomerizes under the influence of the potassium cyanide. [Pg.155]

The conversion of carboxylic acid derivatives (halides, esters and lactones, tertiary amides and lactams, nitriles) into aldehydes can be achieved with bulky aluminum hydrides (e.g. DIBAL = diisobutylaluminum hydride, lithium trialkoxyalanates). Simple addition of three equivalents of an alcohol to LiAlH, in THF solution produces those deactivated and selective reagents, e.g. lithium triisopropoxyalanate, LiAlH(OPr )j (J. Malek, 1972). [Pg.96]

Allylalion of the alkoxymalonitrile 231 followed by hydrolysis affords acyl cyanide, which is converted into the amide 232. Hence the reagent 231 can be used as an acyl anion equivalent[144]. Methoxy(phenylthio)acetonitrile is allylated with allylic carbonates or vinyloxiranes. After allylation. they are converted into esters or lactones. The intramolecular version using 233 has been applied to the synthesis of the macrolide 234[37]. The /i,7-unsaturated nitrile 235 is prepared by the reaction of allylic carbonate with trimethylsilyl cyanide[145]. [Pg.321]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

The synthetic application of reactions based upon the intramolecular addition of a carbanion or its enamine equivalent to a carbonyl or nitrile group has been explored extensively. One class of such reactions, namely the Dieckman, has already been discussed in Section 3.03.2.2, since ring closure can often occur so as to form either the C(2)—C(3) or C(3)—C(4) bond of the heterocyclic ring. Some illustrative examples of the application of this type of ring closure are presented in Scheme 46. [Pg.114]

A variety of 1-azirines are available (40-90%) from the thermally induced extrusion (>100 °C) of triphenylphosphine oxide from oxazaphospholines (388) (or their acyclic betaine equivalents), which are accessible through 1,3-dipolar cycloaddition of nitrile oxides (389) to alkylidenephosphoranes (390) (66AG(E)1039). Frequently, the isomeric ketenimines (391) are isolated as by-products. The presence of electron withdrawing functionality in either or both of the addition components can influence the course of the reaction. For example, addition of benzonitrile oxide to the phosphorane ester (390 = C02Et) at... [Pg.89]

Cyanohydrin trimethylsilyl ethers are generally useful as precursors of ctir-bonyl anion equivalents and as protected forms of aldehydes. Direct conversion of p-anisaldehyde into 0-TRIMETHYLSILYL-4-METH0XYMANDEL0-NITRILE employs a convenient in situ generation of trimethylsilyl cyanide from chlorotnmethylsilane A general synthesis of allemc esters is a variant of the Wittig reaction. Ethyl (triphenylphosphoranylidene)acetate converts pro-pionyl chloride into ETHYL 2,3-PENTADlENOATE. [Pg.226]

With nitriles, products from addition of one or two equivalents of halogen fluoride can be obtained [725, 726, 127, 128] (equations 25 and 26) on reaction with chlorine fluoride or bromine and an alkali metal fluoride. [Pg.68]

Among the most successful classes of asymmetric acyl anion equivalents are the dioxane-containing a-amino nitriles 99 introduced by Enders and coworkers. These are deprotonated by EDA, and the resulting anions act as efficient equivalents of RCO for addition to a, (3-unsaturated esters [90AG(E)179],... [Pg.102]

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

Accordingly, cyclic nitronates can be a useful synthetic equivalent of functionalized nitrile oxides, while reaction examples are quite limited. Thus, 2-isoxazoline N-oxide and 5,6-dihydro-4H-l,2-oxazine N-oxide, as five- and six-membered cyclic nitronates, were generated in-situ by dehydroiodination of 3-iodo-l-nitropropane and 4-iodo-l-nitrobutane with triethylamine and trapped with monosubstituted alkenes to give 5-substituted 3-(2-hydroxyethyl)isoxazolines and 2-phenylperhydro-l,2-oxazino[2,3-fe]isoxazole, respectively (Scheme 7.26) [72b]. Upon treatment with a catalytic amount of trifluoroacetic acid, the perhydro-l,2-oxazino[2,3-fe]isoxazole was quantitatively converted into the corresponding 2-isoxazoline. Since a method for catalyzed enantioselective nitrone cycloadditions was established and cyclic nitronates should behave like cyclic nitrones in reactivity, there would be a good chance to attain catalyzed enantioselective formation of 2-isoxazolines via nitronate cycloadditions. [Pg.272]

The conversion of a nitrile R —CN into a ketone R —CO—R demonstrates that polarized multiple bonds other than C=0 also react with Grignard reagents, and that such reactions are synthetically useful. Esters 22 and acid chlorides can react subsequently with two equivalents of RMgX the initially formed tetravalent product from the first addition reaction can decompose to a ketone that is still reactive, and reacts with a second RMgX. The final product 23 then contains two substituents R, coming from the Grignard reagent ... [Pg.147]

The BF3 Et20-catalyzed aziridination of compounds 47 (Scheme 3.15) with a diazo ester derived from (R)-pantolacetone gave aziridine-2-carboxylates 48 [59]. The reaction exhibited both high cis selectivity (>95 <5) and excellent diastereose-lectivity. Treatment of a-amino nitrile 49 (Scheme 3.16) with ethyl diazoacetate in the presence of 0.5 equivalent of SnCl4 afforded aziridines 50 and 51 in 39% yield in a ratio of 75 25 [60]. [Pg.80]

Iminocarbene complexes of chromium and tungsten are useful isolable synthetic equivalents to nitrile ylides having the advantage that the range of 1,3-dipo-larophiles is not limited to electron-acceptor substrates and can be extended to electronically neutral as well as to electron-rich systems [56] (Scheme 18). [Pg.74]

On treatment with two equivalents of dimethylaluminum amide (Me2AlNH2), carboxylic esters can be converted to nitriles RCOOR —> RCN. This is very likely a combination of 10-58 and 17-32. See also 19-5. [Pg.1195]

Although nitrile oxide cycloadditions have been extensively investigated, cycloadditions of silyl nitronates, synthetic equivalent of nitrile oxides in their reactions with olefins, have not received similar attention. Since we found that the initial cycloadducts, hl-silyloxyisoxazolidines, are formed with high degree of stereoselectivity and can be easily transformed into isoxazolines upon treatment with acid or TBAF, intramolecular silylnitronate-olefin cycloadditions (ISOC) have emerged as a superior alternative to their corresponding INOC reactions [43]. Furthermore, adaptability of ISOC reactions to one-pot tandem sequences involving 1,4-addition and ISOC as the key steps has recently been demonstrated [44]. [Pg.21]

Nitriles [153, 211] are tolerated by an equivalent of reagent in the presence of a particularly reactive site of unsaturation, such as a terminal alkyne or vinyl function, whereas methacrylonitrile gives only C N hydrozirconation (Scheme 8-26) [215]. [Pg.269]

In Section 8.2.3.2, we discussed arylation of enolates and enolate equivalents using palladium catalysts. Related palladium-phosphine combinations are very effective catalysts for aromatic nucleophilic substitution reactions. For example, conversion of aryl iodides to nitriles can be done under mild conditions with Pd(PPh3)4 as a catalyst. [Pg.1045]

Many other examples of synthetic equivalent groups have been developed. For example, in Chapter 6 we discussed the use of diene and dienophiles with masked functionality in the Diels-Alder reaction. It should be recognized that there is no absolute difference between what is termed a reagent and a synthetic equivalent group. For example, we think of potassium cyanide as a reagent, but the cyanide ion is a nucleophilic equivalent of a carboxy group. This reactivity is evident in the classical preparation of carboxylic acids from alkyl halides via nitrile intermediates. [Pg.1171]


See other pages where Nitriles equivalents is mentioned: [Pg.115]    [Pg.115]    [Pg.115]    [Pg.115]    [Pg.115]    [Pg.115]    [Pg.28]    [Pg.495]    [Pg.20]    [Pg.222]    [Pg.221]    [Pg.273]    [Pg.258]    [Pg.303]    [Pg.97]    [Pg.71]    [Pg.27]    [Pg.788]    [Pg.262]    [Pg.238]    [Pg.115]    [Pg.1179]    [Pg.1217]    [Pg.131]    [Pg.262]    [Pg.30]    [Pg.197]    [Pg.24]    [Pg.99]   
See also in sourсe #XX -- [ Pg.1168 ]




SEARCH



Nitriles, a- acyl anion equivalents

Nitriles, a-aminoacyl anion equivalents

Nitriles, a-aminoacyl anion equivalents synthesis

Nitriles, a-aminoacyl anion equivalents via Lewis acid catalysis

© 2024 chempedia.info