Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles catalysts

The functionalized dichlorosilane monomers are synthesized generally by radical addition of dichloro-methylsilane to an unsaturated carboxylic acid ester or an unsaturated nitrile. Catalysts used for this purpose are platinum/charcoal (Jl 0,J 1 ), or organic peroxides (T2), but for laboratory syntheses hexachloroplati-nic acid (13,14) proved to be most convenient (scheme 1 a). ... [Pg.343]

Carboxylic esters of norbomene can be polymerized with Pd-(Il)-nitrile catalysts Pd(RCN)4 x (BF4)2 with R = CH3,C2H5 (39). However, the polymerization takes place only selectively, as mostly the exo isomer polymerizes. [Pg.49]

J.P. Mathew, A. Reinmuth, J. Melia, N. Swords, and W. Risse, (ry-3-allyl) palladium (ii) and palladium (ii) nitrile catalysts for the addition polymerization of norbomene derivatives with functional groups, Macromolecules, 29(8) 2755-2763,1996. [Pg.71]

Nitrile Catalyst Medium T(° C) H2 P (MPa) Primary Amine Selectivity (or Yield) (mol%) Secondary Tertiary Other Amine Amine Products Ref. [Pg.272]

Table I. EFFECTIVE CATALYSTS FOR TRIMERIZING AROMATIC NITRILES CATALYST FORMULA... Table I. EFFECTIVE CATALYSTS FOR TRIMERIZING AROMATIC NITRILES CATALYST FORMULA...
Hoesch synthesis A variation of the Gattermann synthesis of hydroxy-aldehydes, this reaction has been widely applied to the synthesis of anthocyanidins. It consists of the condensation of polyhydric phenols with nitriles by the action of hydrochloric acid (with or without ZnCl2 as a catalyst). This gives an iminehydrochloride which on hydrolysis with water gives the hydroxy-ketone. [Pg.205]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

Unsaturated nitriles are formed by the reaction of ethylene or propylene with Pd(CN)2[252]. The synthesis of unsaturated nitriles by a gas-phase reaction of alkenes. HCN, and oxygen was carried out by use of a Pd catalyst supported on active carbon. Acrylonitrile is formed from ethylene. Methacrylonitrile and crotononitrile are obtained from propylene[253]. Vinyl chloride is obtained in a high yield from ethylene and PdCl2 using highly polar solvents such as DMF. The reaction can be made catalytic by the use of chloranil[254]. [Pg.59]

Metallic Pd is a good catalyst for the conversion of the primary azide 34 into the nitrile 35 in the presence of a hydrogen acceptor such as diphenylacety-lene[33]. By this method, organic halides can be converted into nitriles without increasing the carbon number. Reaction of the azidoformate 36 with an allylic... [Pg.532]

Thus a second method was envisaged, the reaction of a nitrile, hydrogen selenide, and an a-halogenated ketone in the presence of a condensation catalyst, which can be POCl, or POCI3 with a Lewis acid such as PCI3 or anhydrous ZnCl. The use of fresh AICI3 leads to the formation of tarry side-products. [Pg.220]

Alkylthiazoles can be oxidized to nitriles in the presence of ammonia and a catalyst. For example, 4-cyanothiazole was prepared from 4-methylthiazole by a one-step vapor-phase process (94) involving reaction with a mixture of air, oxygen, and ammonia at 380 to 460°C. The catalyst was M0O3 and V Oj or M0O3, VjOj, and CoO on an alumina support. [Pg.531]

Nitriles react with ammonia, or primary or secondary amines in the presence of an acid catalyst to give amidines (Scheme 26) (75, 77, 81). The catalysts used are hydrochloric acid and aluminium chloride. The amidines are anthelmintics for animals such as sheep, goats, cattle, horses, and Swine. [Pg.532]

An important nitrile is acrylonitrile H2C=CHCN It is prepared industrially from propene ammonia and oxygen m the presence of a special catalyst Polymers of acryl omtrile have many applications the most prominent being their use m the preparation of acrylic fibers... [Pg.870]

The kinds of vinyl monomers which undergo anionic polymerization are those with electron-withdrawing substituents such as the nitrile, carboxyl, and phenyl groups. We represent the catalysts as AB in this discussion these are substances which break into a cation (A ) and an anion (B ) under the conditions of the reaction. In anionic polymerization it is the basic anion which adds across the double bond of the monomer to form the active center for polymerization ... [Pg.404]

As a class of compounds, nitriles have broad commercial utility that includes their use as solvents, feedstocks, pharmaceuticals, catalysts, and pesticides. The versatile reactivity of organonitnles arises both from the reactivity of the C=N bond, and from the abiHty of the cyano substituent to activate adjacent bonds, especially C—H bonds. Nitriles can be used to prepare amines, amides, amidines, carboxyHc acids and esters, aldehydes, ketones, large-ring cycHc ketones, imines, heterocycles, orthoesters, and other compounds. Some of the more common transformations involve hydrolysis or alcoholysis to produce amides, acids and esters, and hydrogenation to produce amines, which are intermediates for the production of polyurethanes and polyamides. An extensive review on hydrogenation of nitriles has been recendy pubHshed (10). [Pg.217]

Adiponitrile undergoes the typical nitrile reactions, eg, hydrolysis to adipamide and adipic acid and alcoholysis to substituted amides and esters. The most important industrial reaction is the catalytic hydrogenation to hexamethylenediarnine. A variety of catalysts are used for this reduction including cobalt—nickel (46), cobalt manganese (47), cobalt boride (48), copper cobalt (49), and iron oxide (50), and Raney nickel (51). An extensive review on the hydrogenation of nitriles has been recendy pubUshed (10). [Pg.220]

In 1987, Toray Industries, Inc., announced the development of a new process for making aromatic nitriles which reportedly halved the production cost, reduced waste treatment requirements, and reduced production time by more than two-thirds, compared with the vapor-phase process used by most producers. The process iavolves the reaction of ben2oic acid (or substituted ben2oic acid) with urea at 220—240°C ia the presence of a metallic catalyst (78). [Pg.225]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

As improvements over P-methylumbeUiferone (55—57), 4-methyl-7-amino-coumarin [26093-31-2] (12a) and 7-dimethylamino-4-methylcoumarin [87-014] (12b) (58—61) were proposed. These compounds are used for brightening wool and nylon either in soap powders or detergents, or as salts under acid dyeing conditions. They are obtained by the Pechmaim synthesis from appropriately substituted phenols and P-ketocarboxyflc acid esters or nitriles in the presence of Lewis acid catalysts (see Coumarin). [Pg.117]

Phosphoms pentafluoride behaves as a Lewis acid showing electron-accepting properties. It forms complexes, generally in a ratio of 1 1 with Lewis bases, with amines, ethers, nitriles, sulfoxides, and other bases. These complexes are frequently less stable than the similar BF complexes, probably owing to stearic factors. Because it is a strong acceptor, PF is an excellent catalyst especially in ionic polymeri2ations. Phosphoms pentafluoride is also used as a source of phosphoms for ion implantation (qv) in semiconductors (qv) (26). [Pg.224]

A variation of the Pd/Cu Wacker-Hoechst process, termed OK Technology, has been proposed by Catalytica Associates (40—46). This process avoids the use of chlorides and uses a Pd/Cu catalyst system which incorporates a polyoxoanion and a nitrile ligand. [Pg.489]

Lewis acids, such as the haUde salts of the alkaline-earth metals, Cu(I), Cu(II), 2inc, Fe(III), aluminum, etc, are effective catalysts for this reaction (63). The ammonolysis of polyamides obtained from post-consumer waste has been used to cleave the polymer chain as the first step in a recycle process in which mixtures of nylon-6,6 and nylon-6 can be reconverted to diamine (64). The advantage of this approach Hes in the fact that both the adipamide [628-94-4] and 6-aminohexanoamide can be converted to hexarnethylenediarnine via their respective nitriles in a conventional two-step process in the presence of the diamine formed in the original ammonolysis reaction, thus avoiding a difficult and cosdy separation process. In addition, the mixture of nylon-6,6 and nylon-6 appears to react faster than does either polyamide alone. [Pg.225]

Hydrolysis of primary amides cataly2ed by acids or bases is very slow. Even more difficult is the hydrolysis of substituted amides. The dehydration of amides which produces nitriles is of great commercial value (8). Amides can also be reduced to primary and secondary amines using copper chromite catalyst (9) or metallic hydrides (10). The generally unreactive nature of amides makes them attractive for many appHcations where harsh conditions exist, such as high temperature, pressure, and physical shear. [Pg.183]

A continuous process has been described (14) which can produce either the amide or the nitrile by adjusting the reaction conditions. Boric acid has been used as a catalyst in the amidation of fatty acid (15). Other catalysts employed include alumina (16), titanium, and 2inc alkoxides (17). The difficulty of complete reaction during synthesis has been explained by the formation of RCOOH NH RCOO , a stable intermediate acid ammonium salt (18). [Pg.183]

Method 5. Nitrile reduction reaction of a nitrile with hydrogen over a hydrogenation catalyst. [Pg.199]


See other pages where Nitriles catalysts is mentioned: [Pg.126]    [Pg.203]    [Pg.117]    [Pg.124]    [Pg.248]    [Pg.126]    [Pg.203]    [Pg.117]    [Pg.124]    [Pg.248]    [Pg.28]    [Pg.70]    [Pg.210]    [Pg.191]    [Pg.111]    [Pg.234]    [Pg.402]    [Pg.404]    [Pg.85]    [Pg.182]    [Pg.311]    [Pg.277]    [Pg.7]    [Pg.439]    [Pg.506]    [Pg.95]    [Pg.383]    [Pg.200]   
See also in sourсe #XX -- [ Pg.304 ]

See also in sourсe #XX -- [ Pg.304 ]

See also in sourсe #XX -- [ Pg.6 , Pg.304 ]




SEARCH



© 2024 chempedia.info