Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric oxide reaction pathway

In order to calculate the steady-state concentration of ozone in the stratosphere, we need to balance the rate of production of odd oxygen with its rate of destruction. Chapman originally thought that the destruction was due to the reaction O + 03 —> 2O2, but we now know that this pathway is a minor sink compared to the catalytic destruction of 03 by the trace species OH, NO, and Cl. The former two of these are natural constituents of the atmosphere, formed primarily in the photodissociation of water or nitric oxide, respectively. The Cl atoms are produced as the result of manmade chlorofluorocarbons, which are photodissociated by sunlight in the stratosphere to produce free chlorine atoms. It was Rowland and Molina who proposed in 1974 that the reactions Cl + 03 —> CIO + O2 followed by CIO + O —> Cl + O2 could act to reduce the concentration of stratospheric ozone.10 The net result of ah of these catalytic reactions is 2O3 — 3O2. [Pg.283]

At present, new developments challenge previous ideas concerning the role of nitric oxide in oxidative processes. The capacity of nitric oxide to oxidize substrates by a one-electron transfer mechanism was supported by the suggestion that its reduction potential is positive and relatively high. However, recent determinations based on the combination of quantum mechanical calculations, cyclic voltammetry, and chemical experiments suggest that °(NO/ NO-) = —0.8 0.2 V [56]. This new value of the NO reduction potential apparently denies the possibility for NO to react as a one-electron oxidant with biomolecules. However, it should be noted that such reactions are described in several studies. Thus, Sharpe and Cooper [57] showed that nitric oxide oxidized ferrocytochrome c to ferricytochrome c to form nitroxyl anion. These authors also proposed that the nitroxyl anion formed subsequently reacted with dioxygen, yielding peroxynitrite. If it is true, then Reactions (24) and (25) may represent a new pathway of peroxynitrite formation in mitochondria without the participation of superoxide. [Pg.698]

Despite intense study of the chemical reactivity of the inorganic NO donor SNP with a number of electrophiles and nucleophiles (in particular thiols), the mechanism of NO release from this drug also remains incompletely understood. In biological systems, both enzymatic and non-enzymatic pathways appear to be involved [28]. Nitric oxide release is thought to be preceded by a one-electron reduction step followed by release of cyanide, and an inner-sphere charge transfer reaction between the ni-trosonium ion (NO+) and the ferrous iron (Fe2+). Upon addition of SNP to tissues, formation of iron nitrosyl complexes, which are in equilibrium with S-nitrosothiols, has been observed. A membrane-bound enzyme may be involved in the generation of NO from SNP in vascular tissue [35], but the exact nature of this reducing activity is unknown. [Pg.293]

A very remote secondary H/D isotope effect has been measured for the 2 + 2-cycloaddition of TCNE to 2,7-dimethylocta-2,fran -4,6-triene. The reaction of nitric oxide with iV-benzylidene-4-methoxyaniline to produce 4-methoxybenzenediazonium nitrate and benzaldehyde is thought to proceed via a 2 + 2-cycloaddition between nitric oxide and the imine double bond. A novel mechanism for the stepwise dimerization of the parent silaethylene to 1,3-disilacyclobutane involves a low-barrier [1,2]-sigmatropic shift. Density functional, correlated ab initio calculations, and frontier MO analysis support a concerted 2 + 2-pathway for the addition of SO3 to alkenes. " The enone cycloaddition reactions of dienones and quinones have been reviewed. The 2 + 2-photocycloadditions of homochiral 2(5H)-furanones to vinylene carbonate are highly diastereoisomeric. ... [Pg.457]

Oxidizers may not themselves be combustible, but they may provide reaction pathways to accelerate the oxidation of other combustible materials. Combustible solids and liquids should be segregated from oxidizers. Certain oxidizers undergo dangerous reactions with specific noncombustible materials. Some oxidizers, such as calcium hypochlorite, decompose upon heating or contamination and self-react with violent heat output. Oxidizers include nitrates, nitric acid, nitrites, inorganic peroxides, chlorates, chlorites, dichromates, hypochlorites, perchlorates, permanganates, persulfates and the halogens. [Pg.410]

This review will focus on three main reactions of dilute nitric oxide in physiological solutions. The first reaction is the binding of nitric oxide to ferrous heme iron of guanylate cyclase or other proteins, which is important for the activation of signal transduction pathways. [Pg.2]

Trapping of peroxynitrite from rat alveolar macrophages by superoxide dismutase. Although the fotmation of peroxynitrite is drawn as superoxide reacting with nitric oxide in the extracellular space, the actual reactions may be a combination of the pathways shown in Fig. 40. [Pg.64]

The direct reaction of superoxide with nitric oxide is only one of at least four possible pathways that can form peroxynitrite (Fig. 40). For example, superoxide should also efficiently reduce nitrosyldioxyl radical to peroxynitrite. Alternatively, nitric oxide may be reduced to nitroxyl anion, which reacts with oxygen to form peroxynitrite. Superoxide dismutase could even catalyze the formation of peroxynitrite, since reduced (Cu or cuprous) superoxide dismutase can reduce nitric oxide to nitroxyl anion (Murphy and Sies, 1991). Thus, superoxide might first reduce superoxide dismutase to the cuprous form, with nitric oxide reacting with reduced superoxide dismutase to produce nitroxyl anion. A fourth pathway to form peroxynitrite is by the rapid reaction of nitrosonium ion (NO" ) with hydrogen peroxide. This is a convenient synthetic route for experimental studies (Reed et al., 1974), but not likely to be physiologically relevant due to the low concentrations of hydrogen peroxide and the difficulty of oxidizing nitric oxide to nitrosonium ion. [Pg.66]

Polyphenols can act as antioxidants by a number of potential pathways. The most important is likely to be by free radical scavenging, in which the polyphenol can break the radical chain reaction. Polyphenols are effective antioxidants in a wide range of chemical oxidation systems, being capable of scavenging peroxyl radicals, alkyl peroxyl radicals, superoxide, hydroxyl radicals, nitric oxide and peroxynitrate in aqueous and organic environments [121]. This activity is due to the ability of donating an H atom from an aromatic hydroxyl group to a free radical, and the major ability of an aromatic structure to support an unpaired electron by delocalization around the 7i-electron system. Phenolic acids... [Pg.293]

This reaction competes favorably with other CH3O2 reactions, such as (R16) and (R20), and offers a fast pathway to the methoxy radical (CH3O). In a similar reaction, nitric oxide converts the hydroperoxy radical (HO2) to the more reactive hydroxyl radical,... [Pg.592]


See other pages where Nitric oxide reaction pathway is mentioned: [Pg.706]    [Pg.707]    [Pg.49]    [Pg.69]    [Pg.242]    [Pg.401]    [Pg.573]    [Pg.50]    [Pg.126]    [Pg.698]    [Pg.736]    [Pg.812]    [Pg.818]    [Pg.204]    [Pg.125]    [Pg.1189]    [Pg.86]    [Pg.562]    [Pg.110]    [Pg.276]    [Pg.264]    [Pg.165]    [Pg.219]    [Pg.296]    [Pg.305]    [Pg.307]    [Pg.328]    [Pg.699]    [Pg.737]    [Pg.813]    [Pg.819]    [Pg.592]    [Pg.607]    [Pg.152]    [Pg.985]    [Pg.942]    [Pg.1652]    [Pg.93]   
See also in sourсe #XX -- [ Pg.377 ]




SEARCH



Nitric oxide ozone reaction pathway

Nitric oxide pathway

Nitric oxide reaction

Nitric reaction

Oxidation pathways

Oxidative pathways

Reaction pathways

© 2024 chempedia.info