Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium corrosion resistant alloys

Niobium is also important in nonferrous metallurgy. Addition of niobium to tirconium reduces the corrosion resistance somewhat but increases the mechanical strength. Because niobium has a low thermal-neutron cross section, it can be alloyed with tirconium for use in the cladding of nuclear fuel rods. A Zr—l%Nb [11107-78-1] alloy has been used as primary cladding in the countries of the former USSR and in Canada. A Zr—2.5 wt % Nb alloy has been used to replace Zircaloy-2 as the cladding in Candu-PHW (pressurized hot water) reactors and has resulted in a 20% reduction in wall thickness of cladding (63) (see Nuclear reactors). [Pg.26]

Stainless Steel There are more than 70 standard types of stainless steel and many special alloys. These steels are produced in the wrought form (AISI types) and as cast alloys [Alloy Casting Institute (ACI) types]. Gener y, all are iron-based, with 12 to 30 percent chromium, 0 to 22 percent nickel, and minor amounts of carbon, niobium (columbium), copper, molybdenum, selenium, tantalum, and titanium. These alloys are veiy popular in the process industries. They are heat- and corrosion-resistant, noncontaminating, and easily fabricated into complex shapes. [Pg.2443]

The basic corrosion behaviour of stainless steels is dependent upon the type and quantity of alloying. Chromium is the universally present element but nickel, molybdenum, copper, nitrogen, vanadium, tungsten, titanium and niobium are also used for a variety of reasons. However, all elements can affect metallurgy, and thus mechanical and physical properties, so sometimes desirable corrosion resisting aspects may involve acceptance of less than ideal mechanical properties and vice versa. [Pg.519]

Other more highly alloyed types, of which a typical example is given in Table 3.11, have the designation of precipitation hardening martensitic. Relative to the simple 13% chromium types they have a substantial nickel content and low carbon with additions from molybdenum, copper, aluminium, titanium and niobium. These offer improved corrosion resistance, strength, toughness, weldability and fabrication properties, but not always together. [Pg.522]

The corrosion behaviour of amorphous alloys has received particular attention since the extraordinarily high corrosion resistance of amorphous iron-chromium-metalloid alloys was reported. The majority of amorphous ferrous alloys contain large amounts of metalloids. The corrosion rate of amorphous iron-metalloid alloys decreases with the addition of most second metallic elements such as titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel, copper, ruthenium, rhodium, palladium, iridium and platinum . The addition of chromium is particularly effective. For instance amorphous Fe-8Cr-13P-7C alloy passivates spontaneously even in 2 N HCl at ambient temperature ". (The number denoting the concentration of an alloy element in the amorphous alloy formulae is the atomic percent unless otherwise stated.)... [Pg.633]

Water The corrosion resistance of pure niobium in water and steam at elevated temperatures is not sufficient to allow its use as a canning material in water-cooled nuclear reactors. Alloys of niobium with molybdenum, titanium, vanadium and zirconium however have improved resistance and have possibilities in this application. Whilst the Nb-lOTi-lOMo alloy offers... [Pg.854]

Niobium-Vanadium The presence of vanadium reduces niobium s corrosion resistance to most media. The alloy containing 12 6 at. Vo V however has excellent resistance to high-temperature water and steam, and this property and the alloy s relatively low neutron cross section give it considerable potential for nuclear applications. [Pg.859]

Tantalum-Niobium Alloying tantalum usually decreases the corrosion resistance of the metal due to metallic contamination of the TajOj passive film. The corrosion rates in HCl and H2SO4 environments increase roughly... [Pg.900]

Hafnium is used in control rods for nuclear reactors. It has high resistance to radiation and also very high corrosion resistance. Another major application is in alloys with other refractory metals, such as, tungsten, niobium and tantalum. [Pg.330]

Niobium is a very important metal in both ferrous and nonferrous metallurgy. As an additive to alloys or when alloyed with other metals niobium imparts high mechanical strength, high electrical conductivity, and ductihty to alloys. It enhances corrosion resistance of most alloys. The metal and several of its alloys exhibit superconductivity. Nobium is used as an additive in... [Pg.627]

Because hafnium has a high absorption cross-section for thermal neutrons (almost 600 times that of zirconium), has excellent mechanical properties, and is extremely corrosion resistant, it is used to make the control rods of nuclear reactors. It is also applied in vacuum lines as a getter —a material that combines with and removes trace gases from vacuum tubes. Hafnium has been used as an alloying agent for iron, titanium, niobium, and other metals. Finely divided hafnium is pyrophoric and can ignite spontaneously in air. [Pg.184]

The corrosion resistance of steel can be greatly increased by alloying with chromium to form the stainless steels. Figure 12 shows the effect of increasing chromium content on the corrosion rate of steel. At 12-14% Cr there is a dramatic decrease in corrosion rate. The corrosion resistance is due to the formation of a thin adherent layer of chromium oxide on the steel surface [23]. The steel will remain stainless provided the oxide layer remains intact or can be rapidly repaired, i.e. the steel is exposed to oxidising conditions. The precipitation of chromium carbide at grain boundaries will cause disruption of this oxide film (See Sect. 3.2.5) and hence localised corrosion. Precipitation of chromium carbide can be reduced by alloying with elements which form carbides more readily than chromium, e.g. titanium, niobium, and tantalum. [Pg.257]

Austenitic alloys also make use of the concept of stabilization. Stainless types 321 and 347 are versions of type 304 stabilized with titanium and niobium, respectively. These elements will preferentially combine with carbon that comes out of solid solution during weld solidification. Rather than a loss of corrosion resistance associated with formation of harmful chromium carbides, the carbides of titanium and niobium are not detrimental to corrosion resistance. The austenitic family of stainless also prompted another approach to avoiding the effects of chromium carbide precipitation. Because the amount of chromium that precipitated was proportional to the carbon content, lowering the carbon could prevent sensitization. Maintaining the carbon content to below about 0.035% vs. [Pg.790]


See other pages where Niobium corrosion resistant alloys is mentioned: [Pg.646]    [Pg.745]    [Pg.587]    [Pg.779]    [Pg.128]    [Pg.137]    [Pg.7]    [Pg.7]    [Pg.26]    [Pg.26]    [Pg.40]    [Pg.433]    [Pg.2448]    [Pg.956]    [Pg.469]    [Pg.642]    [Pg.783]    [Pg.883]    [Pg.905]    [Pg.96]    [Pg.31]    [Pg.169]    [Pg.40]    [Pg.184]    [Pg.1039]    [Pg.1594]    [Pg.339]    [Pg.107]    [Pg.2203]    [Pg.5265]    [Pg.433]    [Pg.2707]   
See also in sourсe #XX -- [ Pg.446 ]




SEARCH



Alloys corrosion resistance

Corrosion alloying

Corrosion resistance

Corrosion resistant alloys

Niobium resistance

Resistance alloys

© 2024 chempedia.info