Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel complexes alkene

If, in an early stage of the reaction, a second cyclopropene molecule is coordinated to the nickel, homo-cyclodimerization leading to tricyclic dimers of type 28 may also occur. To prevent the formation of 28, the stationary concentration of the cyclopropene in the reaction mixture must be small, i.e. the cyclopropene must be added slowly. This is especially critical if the electron-poor alkenes are only weakly bound, as is the case with methyl acrylate and the 3-alkyl-substituted acrylates. When acrolein or acrylonitrile are employed, the cycloaddition reaction is inhibited due to the formation of stable bis(alkene)nickel complexes. [Pg.238]

The addition of allcenes to alkenes can also be accomplished by bases as well as by the use of catalyst systems consisting of nickel complexes and alkylaluminum compounds (known as Ziegler catalysts), rhodium catalysts, and other transition metal catalysts, including iron. These and similar catalysts also catalyze the 1,4 addition of alkenes to conjugated dienes, for example. [Pg.1020]

Most studies on nickel-catalyzed domino reactions have been performed by Ikeda and colleagues [287], who observed that alkenyl nickel species, obtained from alkynes 6/4-41 and a (jr-allyl) nickel complex, can react with organometallics as 6/4-42. If this reaction is carried out in the presence of enones 6/4-43 and TM SCI, then coupling products such as 6/4-44 are obtained. After hydrolysis, substituted ketones 6/4-45 are obtained (Scheme 6/4.12). With cyclic and (5-substituted enones the use of pyridine is essential. Usually, the regioselectivity and stereoselectivity of the reactions is very high. On occasion, alkenes can be used instead of alkynes, though this is rather restricted as only norbornene gave reasonable results [288]. [Pg.465]

The electrochemistry of cobalt-salen complexes in the presence of alkyl halides has been studied thoroughly.252,263-266 The reaction mechanism is similar to that for the nickel complexes, with the intermediate formation of an alkylcobalt(III) complex. Co -salen reacts with 1,8-diiodo-octane to afford an alkyl-bridged bis[Co" (salen)] complex.267 Electrosynthetic applications of the cobalt-salen catalyst are homo- and heterocoupling reactions with mixtures of alkylchlorides and bromides,268 conversion of benzal chloride to stilbene with the intermediate formation of l,2-dichloro-l,2-diphenylethane,269 reductive coupling of bromoalkanes with an activated alkenes,270 or carboxylation of benzylic and allylic chlorides by C02.271,272 Efficient electroreduc-tive dimerization of benzyl bromide to bibenzyl is catalyzed by the dicobalt complex (15).273 The proposed mechanism involves an intermediate bis[alkylcobalt(III)] complex. [Pg.488]

Early attempts at an asymmetric hydroalumination utilized a chiral -butylsalicylidenime complexed to a nickel(n) complex 117.128 When racemic 3,7-dimethyl-1-octene 116 was treated with 0.2mol% of the nickel complex 117 and 0.3 equiv. of TIBA at 0°C, followed by hydrolysis, the alkene 118 with 1.2% ee was obtained. The unreacted olefin 119 was recovered and found to have an ee of 1.8% (Scheme 14). [Pg.861]

Sulfonium ylides R2S=CR 2 [672,673] and metallated sulfones [674-676] can cyclopropanate simple alkenes upon catalysis with copper and nickel complexes (Table 3.6). Because of the increased nucleophilicity and basicity of these ylides, compared with diazoalkanes, these reagents are prone to numerous side-reactions,... [Pg.116]

As mentioned in Sections 3.1.6 and 4.1.3, cyclopropenes can also be suitable starting materials for the generation of carbene complexes. Cyclopropenone di-methylacetal [678] and 3-alkyl- or 3-aryl-disubstituted cyclopropenes [679] have been shown to react, upon catalysis by Ni(COD)2, with acceptor-substituted olefins to yield the products of formal, non-concerted vinylcarbene [2-1-1] cycloaddition (Table 3.6). It has been proposed that nucleophilic nickel carbene complexes are formed as intermediates. Similarly, bicyclo[1.1.0]butane also reacts with Ni(COD)2 to yield a nucleophilic homoallylcarbene nickel complex [680]. This intermediate is capable of cyclopropanating electron-poor alkenes (Table 3.6). [Pg.119]

Fhe electrochemical generation of alkyl radicals catalysed by square planar nickel complexes has been used to achieve radical-alkene addition reactions. Complex 64 was the catalyst of choice. Intramolecular cyclizations to give five raem-... [Pg.142]

The production of 1-alkenes from ethylene oligomerization was carried out with high selectivity in ionic liquids in the presence of a cationic nickel complex catalyst (ri -methallyl)-[bis(diphenylphosphino)methane-monoxide-K -P,0]nickel(II) hexafluoroantimonate, [(mall)-Ni(dppmo)]Sbp6 (240). The overall reaction rate of... [Pg.212]

Another simple oligomerization is the dimerization of propylene. Because of the formation of a relatively less stable branched alkylaluminum intermediate, displacement reaction is more efficient than in the case of ethylene, resulting in almost exclusive formation of dimers. All possible C6 alkene isomers are formed with 2-methyl-1-pentene as the main product and only minor amounts of hexenes. Dimerization at lower temperature can be achieved with a number of transition-metal complexes, although selectivity to 2-methyl-1-pentene is lower. Nickel complexes, for example, when applied with aluminum alkyls and a Lewis acid (usually EtAlCl2), form catalysts that are active at slightly above room temperature. Selectivity can be affected by catalyst composition addition of phosphine ligands brings about an increase in the yield of 2,3-dimethylbutenes (mainly 2,3-dimethyl-1-butene). [Pg.729]

Table 9 Structural Data for some Nickel(0) Phosphine Alkene Mixed Complexes and Related... Table 9 Structural Data for some Nickel(0) Phosphine Alkene Mixed Complexes and Related...
Bis(phosphoranimine) ligands, chromium complexes, 5, 359 Bis(pinacolato)diboranes activated alkene additions, 10, 731—732 for alkyl group functionalization, 10, 110 alkyne additions, 10, 728 allene additions, 10, 730 carbenoid additions, 10, 733 diazoalkane additions, 10, 733 imine additions, 10, 733 methylenecyclopropane additions, 10, 733 Bisporphyrins, in organometallic synthesis, 1, 71 Bis(pyrazol-l-yl)borane acetyl complexes, with iron, 6, 88 Bis(pyrazolyl)borates, in platinum(II) complexes, 8, 503 Bispyrazolyl-methane rhodium complex, preparation, 7, 185 Bis(pyrazolyl)methanes, in platinum(II) complexes, 8, 503 Bis(3-pyrazolyl)nickel complexes, preparation, 8, 80-81 Bis(2-pyridyl)amines... [Pg.66]


See other pages where Nickel complexes alkene is mentioned: [Pg.13]    [Pg.51]    [Pg.53]    [Pg.65]    [Pg.67]    [Pg.161]    [Pg.100]    [Pg.100]    [Pg.103]    [Pg.108]    [Pg.176]    [Pg.178]    [Pg.187]    [Pg.225]    [Pg.877]    [Pg.560]    [Pg.131]    [Pg.256]    [Pg.709]    [Pg.723]    [Pg.868]    [Pg.69]    [Pg.300]    [Pg.1087]    [Pg.305]    [Pg.707]    [Pg.76]    [Pg.108]    [Pg.155]    [Pg.180]    [Pg.343]    [Pg.344]    [Pg.99]   
See also in sourсe #XX -- [ Pg.16 ]

See also in sourсe #XX -- [ Pg.5 , Pg.16 ]




SEARCH



Alkene Insertions with Nickel-Allyl Complexes

Complexes alkenes

Ligand Exchange with Nickel-Alkene Complexes

Nickel complexes alkene phosphines

© 2024 chempedia.info