Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel creep

Creep Rupture. Metals and their alloys lose appreciable strength at elevated temperatures. For most materials, the ultimate tensile and yield strengths fall off regularly as the temperature iacreases, as illustrated ia Figure 2 (2). The exceptions are some iatermetaUics, eg, nickel aluniinide(3 l)... [Pg.110]

Carbon content is usually about 0.15% but may be higher in bolting steels and hot-work die steels. Molybdenum content is usually between 0.5 and 1.5% it increases creep—mpture strength and prevents temper embrittlement at the higher chromium contents. In the modified steels, siUcon is added to improve oxidation resistance, titanium and vanadium to stabilize the carbides to higher temperatures, and nickel to reduce notch sensitivity. Most of the chromium—molybdenum steels are used in the aimealed or in the normalized and tempered condition some of the modified grades have better properties in the quench and tempered condition. [Pg.117]

AISI 321 and 347 are stainless steels that contain titanium and niobium iu order to stabilize the carbides (qv). These metals prevent iatergranular precipitation of carbides during service above 480°C, which can otherwise render the stainless steels susceptible to iatergranular corrosion. Grades such as AISI 316 and 317 contain 2—4% of molybdenum, which iacreases their creep—mpture strength appreciably. In the AISI 200 series, chromium—manganese austenitic stainless steels the nickel content is reduced iu comparison to the AISI 300 series. [Pg.118]

The highly aHoyed austenitic stainless steels are proprietary modifications of the standard AISI 316 stainless steel. These have higher creep—mpture strengths than the standard steels, yet retain the good corrosion resistance and forming characteristics of the standard austenitic stainless steels. Nickel-Base Superalloys. [Pg.119]

A more extensive comparison of many potential turbine blade materials is available (67). The refractory metals and a ceramic, sHicon nitride, provide a much higher value of 100 h stress—mpture life, normalised by density, than any of the cobalt- or nickel-base aHoys. Several intermetaHics and intermetaUic matrix composites, eg, aHoyed Nb Al and MoSi —SiC composites, also show very high creep resistance at 1100°C (68). Nevertheless, the superaHoys are expected to continue to dominate high temperature aHoy technology for some time. [Pg.129]

These requirements severely limit our choice of creep-resistant materials. For example, ceramics, with their high softening temperatures and low densities, are ruled out for aero-engines because they are far too brittle (they are under evaluation for use in land-based turbines, where the risks and consequences of sudden failure are less severe - see below). Cermets offer no great advantage because their metallic matrices soften at much too low a temperature. The materials which best fill present needs are the nickel-based super-alloys. [Pg.199]

Figure 20.6 shows how this evolutionary process has resulted in a continual improvement of creep properties of nickel alloys over the last 30 years, and shows how... [Pg.202]

One must consider, too, the cost of the materials themselves. Some of the metals used in conventional nickel alloys - such as hafnium - are hideously expensive (at UK 100,000 tonne or US 150,000 tonne ) and extremely scarce and the use of greater and greater quantities of exotic materials in an attempt to improve the creep properties will drive the cost of blades up. But expensive though it is, the cost of the... [Pg.207]

Nickel and its alloys form another important class of non-ferrous metals (Table 1.3). The superb creep resistance of the nickel-based superalloys is a key factor in designing the modern gas-turbine aero-engine. But nickel alloys even appear in a model steam engine. The flat plates in the firebox must be stayed together to resist the internal steam pressure (see Fig. 1.3). Some model-builders make these stays from pieces of monel rod because it is much stronger than copper, takes threads much better and is very corrosion resistant. [Pg.7]

For resistance against fatigue, Nimonic 75 has been used with Nimonic 80 and Nimonic 90. Nimonic 75 is an 80-20 nickel-chromium alloy stiffened with a small amount of titanium carbide. Nimonic 75 has excellent oxidation and corrosion resistance at elevated temperatures, a reasonable creep strength, and good fatigue resistance. In addition, it is easy to press, draw, and mold. As firing temperatures have increased in the newer gas turbine models, HA-188, a Cr, Ni-based alloy, has recently been employed in the latter section of some combustion liners for improved creep rupture strength. [Pg.384]

Around 1930, in Ameriea, presumably with the early superchargers in mind, several metallurgists sought to improve the venerable alloy used for eleetric heating elements, 80/20 nickel-chromium alloy (nichrome), by adding small amounts of titanium and aluminum, and found significant increase in creep resistance. [Pg.352]

Nickel alloys have two main properties good resistance to corrosion and high-temperature strength. There are alloys for medium-and low-temperature applications and for high-temperature conditions in which creep resistance is of main importance [24]. [Pg.74]

Silver-palladium-manganese brazes possess excellent creep characteristics and have been developed for high-temperature applications involving the use of cobalt or nickel-based alloys, heat-resistant steels, molybdenum and tungsten. Their liquidus temperatures lie in the range 1 100-1 250°C. [Pg.937]

Sato et al. " measured the viscosities of some binary and ternary alkali carbonates. Since melt creep must be prevented, a highly sintered alumina crucible was used instead of a gold-plated nickel crucible. Homogeneity of a mixture sample was achieved by gas bubbling. A laser beam is combined with a computer-assisted time counter to obtain the logarithmic decrement. Roscoe s equationi3i has been used for calculation of the viscosity, while it has been claimed by Abe et al. that the viscosities calculated from Roscoe s equation are 0.6-1.5% lower than those from more rigorous equations. [Pg.170]

Creep resistance will be important if the material is subjected to high stresses at elevated temperatures. Special alloys, such as Inconel (International Nickel Co.), are used for high temperature equipment such as furnace tubes. [Pg.287]


See other pages where Nickel creep is mentioned: [Pg.119]    [Pg.128]    [Pg.129]    [Pg.130]    [Pg.130]    [Pg.7]    [Pg.346]    [Pg.370]    [Pg.397]    [Pg.400]    [Pg.285]    [Pg.387]    [Pg.431]    [Pg.369]    [Pg.165]    [Pg.6]    [Pg.196]    [Pg.199]    [Pg.206]    [Pg.220]    [Pg.222]    [Pg.761]    [Pg.200]    [Pg.353]    [Pg.274]    [Pg.952]    [Pg.1046]    [Pg.1313]    [Pg.1368]    [Pg.47]    [Pg.11]    [Pg.4]    [Pg.26]    [Pg.170]    [Pg.145]   
See also in sourсe #XX -- [ Pg.389 , Pg.404 , Pg.421 , Pg.450 ]




SEARCH



Nickel creep rupture strength

© 2024 chempedia.info