Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel catalysts temperature

Figure 20.10. Effects of hydrogen pressure on the conjugated linoleic acids of soybean oil with 0.1% selective type nickel catalyst, temperature 210 °C, and agitation rate 500rpm. Source Jung et al, 2002. Figure 20.10. Effects of hydrogen pressure on the conjugated linoleic acids of soybean oil with 0.1% selective type nickel catalyst, temperature 210 °C, and agitation rate 500rpm. Source Jung et al, 2002.
J.G. McCarty, P.Y. Hou, D. Sheridan, and H. Wise, Reactivity of Surface Carbon on Nickel Catalysts Temperature-Programmed Surface Reaction with Hydrogen and Water, in Coke Formation on Metal Surfaces, eds. L.G. Albright and R.T.K. Baker, American Chemical Society, Washington D.C., 1982, p. 253. [Pg.525]

Reactivity of Surface Carbon on Nickel Catalysts Temperature-Programmed Surface Reaction with Hydrogen and Water... [Pg.253]

JG McCarty, PV Hou, D Sheridan, H Wise. Reactivity of surface carbon on nickel catalysts temperature-programmed surface reaction with hydrogen and water. In LF Albright, RT Baker, eds. Coke formation on metal surfaces. Washington, DC American Chemical Society, 1982. [Pg.925]

C. It occurs in natural gas. May prepared by reduction of ethene or ethyne by hydrogen under pressure in the presence of a nickel catalyst, or by the electrolysis of a solution of potassium elhanoate. It has the general properties of the paraffins. Used in low-temperature refrigeration plant. [Pg.164]

Nickel catalysts although less expensive than rhodium and platinum are also less active Hydrogenation of arenes m the presence of nickel requires high temperatures (100-200°C) and pressures (100 atm)... [Pg.428]

The first process utilizes a bed of nickel catalyst which has been regenerated with hydrogen to reduce the nickel content to metallic form. The finely divided metal then reacts with impurities and retains them in the bed, probably as nickel oxide in the case of oxygen or as physisorbed compounds for other impurities. Periodically, the bed is regenerated at elevated temperature using hydrogen to restore the metallic content. The nickel process can be used and regenerated indefinitely. [Pg.88]

The selective addition of the second HCN to provide ADN requires the concurrent isomerisation of 3PN to 4-pentenenitrile [592-51 -8] 4PN (eq. 5), and HCN addition to 4PN (eq. 6). A Lewis acid promoter is added to control selectivity and increase rate in these latter steps. Temperatures in the second addition are significandy lower and practical rates may be achieved above 20°C at atmospheric pressure. A key to the success of this homogeneous catalytic process is the abiUty to recover the nickel catalyst from product mixture by extraction with a hydrocarbon solvent. 2-Methylglutaronitrile [4553-62-2] MGN, ethylsuccinonitfile [17611-82-4] ESN, and 2-pentenenitrile [25899-50-7] 2PN, are by-products of this process and are separated from adiponitrile by distillation. [Pg.221]

Reactions with Ammonia and Amines. Acetaldehyde readily adds ammonia to form acetaldehyde—ammonia. Diethyl amine [109-87-7] is obtained when acetaldehyde is added to a saturated aqueous or alcohoHc solution of ammonia and the mixture is heated to 50—75°C in the presence of a nickel catalyst and hydrogen at 1.2 MPa (12 atm). Pyridine [110-86-1] and pyridine derivatives are made from paraldehyde and aqueous ammonia in the presence of a catalyst at elevated temperatures (62) acetaldehyde may also be used but the yields of pyridine are generally lower than when paraldehyde is the starting material. The vapor-phase reaction of formaldehyde, acetaldehyde, and ammonia at 360°C over oxide catalyst was studied a 49% yield of pyridine and picolines was obtained using an activated siHca—alumina catalyst (63). Brown polymers result when acetaldehyde reacts with ammonia or amines at a pH of 6—7 and temperature of 3—25°C (64). Primary amines and acetaldehyde condense to give Schiff bases CH2CH=NR. The Schiff base reverts to the starting materials in the presence of acids. [Pg.50]

Methanation of the clean desulfurized main gas (less than 1 ppm total sulfur) is accompHshed in the presence of a nickel catalyst at temperatures from 260—400°C and pressure range of 2—2.8 MPa (300—400 psi). Equations and reaction enthalpies are given in Table 4. [Pg.70]

Catalytic methanation processes include (/) fixed or fluidized catalyst-bed reactors where temperature rise is controlled by heat exchange or by direct cooling using product gas recycle (2) through wall-cooled reactor where temperature is controlled by heat removal through the walls of catalyst-filled tubes (J) tube-wall reactors where a nickel—aluminum alloy is flame-sprayed and treated to form a Raney-nickel catalyst bonded to the reactor tube heat-exchange surface and (4) slurry or Hquid-phase (oil) methanation. [Pg.70]

Thermodynamically, the formation of methane is favored at low temperatures. The equilibrium constant is 10 at 300 K and is 10 ° at 1000 K (113). High temperatures and catalysts ate needed to achieve appreciable rates of carbon gasification, however. This reaction was studied in the range 820—1020 K, and it was found that nickel catalysts speed the reaction by three to four orders of magnitude (114). The Hterature for the carbon-hydrogen reaction has been surveyed (115). [Pg.417]

Dicyclohexylarnine may be selectively generated by reductive alkylation of cyclohexylamine by cyclohexanone (15). Stated batch reaction conditions are specifically 0.05—2.0% Pd or Pt catalyst, which is reusable, pressures of 400—700 kPa (55—100 psi), and temperatures of 75—100°C to give complete reduction in 4 h. Continuous vapor-phase amination selective to dicyclohexylarnine is claimed for cyclohexanone (16) or mixed cyclohexanone plus cyclohexanol (17) feeds. Conditions are 5—15 s contact time of <1 1 ammonia ketone, - 3 1 hydrogen ketone at 260°C over nickel on kieselguhr. With mixed feed the preferred conditions over a mixed copper chromite plus nickel catalyst are 18-s contact time at 250 °C with ammonia alkyl = 0.6 1 and hydrogen alkyl = 1 1. [Pg.208]

The catalytic hydrogenation of D-glucose to D-sorbitol is carried out at elevated temperature and pressure with hydrogen ia the preseace of nickel catalysts, in both batch and continuous operations, with >97% yield (56,57). The cathodic reduction of D-glucose to L-sorbitol has been practiced (58). D-Mannitol is a by-product (59). [Pg.16]

Hydrogenation at lower temperature and ia the presence of catalysts yields organic sulfur compounds. With a reduced nickel catalyst at 180°C, methanedithiol [6725-64-0] is formed ... [Pg.28]

Chemical exchange between hydrogen and steam (catalyzed by nickel—chromia, platinum, or supported nickel catalysts) has served as a pre-enrichment step in an electrolytic separation plant (10,70). If the exchange could be operated as a dual-temperature process, it very likely... [Pg.7]

Fuel sulfur is also responsible for a phenomena known as storage and release of sulfur compounds. Sulfur oxides (S02,S02) easily react with ceria, an oxygen storage compound incorporated into most TWC catalysts, and also with alumina. When the air/fuel mixture temporarily goes rich and the catalyst temperature is in a certain range, the stored sulfur is released as H2S yielding a rotten egg odor to the exhaust. A small amount of nickel oxide incorporated into the TWC removes the H2S and releases it later as SO2 (75—79). [Pg.489]

The hydrogenation of pyrazolylacetylenes shows no peculiarities. Ethynylpyra-zoles are hydrogenated in high yields to the corresponding ethane derivatives on Raney nickel catalyst, platinum dioxide, or palladium catalyst at room temperature in alcohol solution. [Pg.40]

Pure piperitone was subjected to the action of purified hydrogen, in the presence of a nickel catalyst, for six hours, the temperature ranging between 175° to 180° C. The double bond in piperitone was readily opened out with the formation of menthone, but further action of the hydrogen under these conditions did not reduce the carbonyl group, even after continued treatment for two days. Under correct conditions, however, the reduction to menthol should take place. The ease with which menthone is formed in this way is of special interest, not only in connection with the production of this ketone, but also as a stage in the manufacture of menthol. [Pg.240]

In a stainless steel hydrogenation bottle were placed 17.6 g (0.1 mol) of 4-(p-methoxyphenyl)-3-buten-2-one, 80 ml of ethyl acetate, and 1 g of Raney nickel catalyst. The hydrogenation bottle was attached to a Paar low-pressure hydrogenation apparatus and the solution was hydrogenated under an initial hydrogen pressure of 50 psi. The hydrogenation was carried out at room temperature and after about 12 hours one equivalent of hydrogen had been absorbed. The catalyst was filtered from the reduction mixture and 18.1 g (0.1 mol) of homoveratrylamine were added to the reduction mixture. [Pg.533]

The first example of homogeneous transition metal catalysis in an ionic liquid was the platinum-catalyzed hydroformylation of ethene in tetraethylammonium trichlorostannate (mp. 78 °C), described by Parshall in 1972 (Scheme 5.2-1, a)) [1]. In 1987, Knifton reported the ruthenium- and cobalt-catalyzed hydroformylation of internal and terminal alkenes in molten [Bu4P]Br, a salt that falls under the now accepted definition for an ionic liquid (see Scheme 5.2-1, b)) [2]. The first applications of room-temperature ionic liquids in homogeneous transition metal catalysis were described in 1990 by Chauvin et al. and by Wilkes et ak. Wilkes et al. used weekly acidic chloroaluminate melts and studied ethylene polymerization in them with Ziegler-Natta catalysts (Scheme 5.2-1, c)) [3]. Chauvin s group dissolved nickel catalysts in weakly acidic chloroaluminate melts and investigated the resulting ionic catalyst solutions for the dimerization of propene (Scheme 5.2-1, d)) [4]. [Pg.214]


See other pages where Nickel catalysts temperature is mentioned: [Pg.43]    [Pg.43]    [Pg.28]    [Pg.258]    [Pg.870]    [Pg.416]    [Pg.475]    [Pg.232]    [Pg.380]    [Pg.208]    [Pg.220]    [Pg.91]    [Pg.226]    [Pg.320]    [Pg.44]    [Pg.79]    [Pg.610]    [Pg.157]    [Pg.182]    [Pg.190]    [Pg.192]    [Pg.195]    [Pg.200]    [Pg.22]    [Pg.23]    [Pg.172]    [Pg.412]    [Pg.764]    [Pg.1204]    [Pg.1280]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Temperature catalyst

© 2024 chempedia.info