Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel catalysts another

Uses ndReactions. Nerol (47) and geraniol (48) can be converted to citroneUol (27) by hydrogenation over a copper chromite catalyst (121). In the absence of hydrogen and under reduced pressure, citroneUal is produced (122). If a nickel catalyst is used, a mixture of nerol, geraniol, and citroneUol is obtained and such a mixture is also useful in perfumery. Hydrogenation of both double bonds gives dimethyl octanol, another useful product. [Pg.420]

Optical resolution is another method of producing (—)-mentho1 from racemic materials. (A)-Menthol is treated with optically active resolving agents to separate the (—)-mentho1 from the (+)-menthol, which is further processed by racemization over a nickel catalyst and recycled (156). [Pg.423]

A selective poison is one that binds to the catalyst surface in such a way that it blocks the catalytic sites for one kind of reaction but not those for another. Selective poisons are used to control the selectivity of a catalyst. For example, nickel catalysts supported on alumina are used for selective removal of acetjiene impurities in olefin streams (58). The catalyst is treated with a continuous feed stream containing sulfur to poison it to an exacdy controlled degree that does not affect the activity for conversion of acetylene to ethylene but does poison the activity for ethylene hydrogenation to ethane. Thus the acetylene is removed and the valuable olefin is not converted. [Pg.174]

Nickel carbide, detected on the catalyst in experiment HGR-14, is another compound suspected of deactivating Raney nickel catalyst. However, the shutdown involved purging with hydrogen while the catalyst... [Pg.119]

Other common precursors are ethylene (C2Hg) and acetylene (C2H2). Acetylene can also be decomposed at lower temperatures (300-750°C) and at pressures up to 1 atm, in the presence of a nickel catalyst.Pl Another common precursor is propylene (CgH ), which decomposes in the 1000-1400°C temperature range at low pressure (- 1.3 X 104 Pa or 100 Torr). ... [Pg.188]

Yet another approach uses electrolysis conditions with the alkyl chloride, Pe(CO)s and a nickel catalyst, and gives the ketone directly, in one step. In the first stage of methods 1, 2, and 3, primary bromides, iodides, and tosylates and secondary tosylates can be used. The second stage of the first four methods requires more active substrates, such as primary iodides or tosylates or benzylic halides. Method 5 has been applied to primary and secondary substrates. [Pg.563]

In the literature there are many reports of the formation of active catalyst for the 1 1 codimerization or synthesis of 1,4-hexadiene employing a large variety of Co or Fe salts, in conjunction with different kinds of ligands and organometallic cocatalysts. There must have been many structures, all of which are active for the codimerization reaction to one degree or another. The scope of the catalyst compositions claimed to be active as the codimerization catalysts is shown in Table XV (69-82). As with the nickel catalyst system discussed earlier, the preferred Co or Fe catalyst system requires the presence of phosphine ligands and an alkylaluminum cocatalyst. The catalytic property can be optimized by structural control of these two components. [Pg.310]

Another large class of chemicals produced starting from ethanol are ethyl-amines. When heated to 150-220 °C over a silica- or alumina-supported nickel catalyst, ethanol and ammonia react to produce ethylamine. Further reaction leads to diethylamine and triethylamine. The ethylamines find use in the synthesis of pharmaceuticals, agricultural chemicals, and surfactants. [Pg.204]

Another highly active non-pyrophoric nickel catalyst is prepared by reduction of nickel acetate in tetrahydrofuran by sodium hydride at 45° in the presence of tert-amyl alcohol (which acts as an activator). Such catalysts, referred to as Nic catalysts, compare with P nickel boride and are suitable for hydrogenations at room temperature and atmospheric pressure, and for partial reduction of acetylenes to civ-alkenes [49]. [Pg.9]

The activity of the nickel catalyst is affected by major variations in carbon monoxide partial pressure. With very low carbon monoxide partial pressure, nickel precipitates as a metal powder and occasionally as nickel iodide. Stability of the catalyst is improved with higher CO partial pressure up to a point above which the catalyst activity drops linearly. The optimum level of carbon monoxide is different from one catalyst mixture to another. This behavior is characteristic of all the nickel catalyzed carbonylation reactions we studied. In the Li-P system, optimum carbon monoxide partial pressure is in the range of 700 to 800 psi (Table V). On the other hand, the optimum carbon monoxide partial pressure for the Li-Sn system is in the range of 220 to 250 psi, at 160 C, and 450 psi at 180 C (Table VI). It is presumed that the retarding effect of higher carbon monoxide partial pressure is associated with stabilizing an inactive carbonyl species. [Pg.69]

Reduction of the nitro group of 545-547 in the presence of Raney nickel catalyst respectively afforded the corresponding 4-amino-pento-, -hexo-, and -hepto-pyranosides 548-550. Methyl 4-amino-2,3,4,6-tetradeoxy-a- and -/3-DL-en/t/iro-hexopyranoside (549), characterized as the A -benzoyl derivative, was identical in its H-n.m.r.-speetral data with the analogous derivative of the natural, antibiotic sugar tolyposamine. On the other hand, reductive demethyl-ation of 549 with formaldehyde-Raney nickel (under 3.5 kg/cm2 pressure of hydrogen) was effected, to yield another antibiotic sugar, methyl DL-forosaminide (551). [Pg.106]

Another approach is to separate the products from the homogeneous catalyst using a two phase liquid system. For example, this method is used in the oligomerization step of the Shell Higher Olefins Process for the manufacture of linear a-olefins.5,9-11,330 A polar nickel catalyst containing a P- chelate ligand is dissolved in a polar solvent e.g. 1,4-butanediol, which is immiscible with higher oc-olefins, and recovery of the catalyst is easily achieved by simple phase separation. [Pg.115]

If the rich gas from the CRG reactor is passed over another bed of high-nickel catalyst at a lower temperature, the equilibrium of the five components is reestablished. Carbon oxides react with hydrogen to form methane and the calorific value of the gas is increased. It should be noted that this methanation step differs from that encountered in ammonia synthesis gas production because of the high steam content the temperature rise is reduced and there is no possibility of temperature runaway as the... [Pg.1559]

There is evidence of a promoting action of chromium on nickel catalysts for the reaction of hydrogenation of valeronitrile in our conditions. Introduction of chromium increased the initial specific activity and the selectivity. The promoting effect of chromium on activity could be correlated to the increase of the metallic surface. Another explanation could be that the Cr+ segregated at the surface of the catalyst may play the role of a Lewis acid center and may be responsible for a better chemisorption of valeronitrile on the catalysts, through nitrogen lone pair electrons or the n orbital of the CN bond. However, further examination of the results obtained (see Fig. 3)... [Pg.119]

Grubbs group [31, 32] developed another type of Ni-based catalyst. This neutral Ni-catalyst, based on salicylaldimine ligands, is active in ethene polymerisation without any co-activator and originated from the Shell higher olefin process (SHOP). Shortly thereafter another active neutral P,0-chelated nickel catalysts for polymerisation of ethene in emulsion was developed by Soula et al. [33, 34, 35]. The historical development of single site catalysts is represented in Fig. 1. [Pg.3]

The nickel-catalyzed hydrocyanation of butadiene is a two-step process (Figure 3.32). In the first step, HCN is added to butadiene in the presence of a nickel-tetrakis(phosphite) complex. This gives the desired linear product, 3-pente-nenitrile (3PN), and an unwanted branched by-product, 2-methyl-3-butenenitrile (2M3BN). The products are separated by distillation, and the 2M3BN is then isomerized to 3PN. In the second step, 3PN is isomerized to 4PN (using the same nickel catalyst), followed by anti-Markovnikov HCN addition to the terminal double bond. The second step is further complicated by the fact that there is another isomerization product, CH3CH2CH=CHCN or 2PN, which is thermodynamically more stable than 4PN. In fact, the equilibrium ratio of 3PN/2PN/4PN is only 20 78 1.6. Fortunately, the reaction kinetics favor the formation of 4PN [95],... [Pg.101]

Another useful technique in kinetic studies is the measurement of the total pressure in an isothermal constant volume system. This method is employed to follow the course of homogeneous gas phase reactions that involve a change in the total number of gaseous molecules present in the reaction system. An example is the hydrogenation of an alkene over a catalyst (e.g., platinum, palladium, or nickel catalyst) to yield an alkane ... [Pg.159]


See other pages where Nickel catalysts another is mentioned: [Pg.15]    [Pg.160]    [Pg.6]    [Pg.170]    [Pg.15]    [Pg.160]    [Pg.6]    [Pg.170]    [Pg.125]    [Pg.10]    [Pg.133]    [Pg.267]    [Pg.172]    [Pg.498]    [Pg.42]    [Pg.491]    [Pg.133]    [Pg.565]    [Pg.27]    [Pg.115]    [Pg.35]    [Pg.90]    [Pg.267]    [Pg.347]    [Pg.17]    [Pg.107]    [Pg.242]    [Pg.1]    [Pg.14]    [Pg.340]    [Pg.140]    [Pg.5]    [Pg.270]    [Pg.519]    [Pg.5]    [Pg.1498]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Another

© 2024 chempedia.info