Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron cell

An experimental teclmique that is usefiil for structure studies of biological macromolecules and other crystals with large unit cells uses neither the broad, white , spectrum characteristic of Lane methods nor a sharp, monocliromatic spectrum, but rather a spectral band with AX/X 20%. Because of its relation to the Lane method, this teclmique is called quasi-Laue. It was believed for many years diat the Lane method was not usefiil for structure studies because reflections of different orders would be superposed on the same point of a film or an image plate. It was realized recently, however, that, if there is a definite minimum wavelengdi in the spectral band, more than 80% of all reflections would contain only a single order. Quasi-Laue methods are now used with both neutrons and x-rays, particularly x-rays from synclirotron sources, which give an intense, white spectrum. [Pg.1381]

The stmcture of Pmssian Blue and its analogues consists of a three-dimensional polymeric network of Fe —CN—Fe linkages. Single-crystal x-ray and neutron diffraction studies of insoluble Pmssian Blue estabUsh that the stmcture is based on a rock salt-like face-centered cubic (fee) arrangement with Fe centers occupying one type of site and [Fe(CN)3] units randomly occupying three-quarters of the complementary sites (5). The cyanides bridge the two types of sites. The vacant [Fe(CN)3] sites are occupied by some of the water molecules. Other waters are zeoHtic, ie, interstitial, and occupy the centers of octants of the unit cell. The stmcture contains three different iron coordination environments, Fe C, Fe N, and Fe N4(H20), in a 3 1 3 ratio. [Pg.435]

There are numerous reports of the effects of antioxidant vitamins on transformation. Vitamin C suppresses x-ray-induced transformation when CSHlOTy cells are treated daily for one week following irradiation (97), suppresses transformation by y-rays or neutrons, and prevents the promotion of radiation-induced transformation by 12-0-tetradecanoylphorbol 13-acetate (TPA), but has no effect on cell survival (98). In these studies, the continuous presence of vitamin C for a critical period appears to be necessary for suppression of transformation. Vitamin C may act on the promotion stage of... [Pg.491]

Silver in the +3 oxidation state, including silver peroxide, ie, black oxide, marketed as AgO, is obtained by the action of the vigorous oxidising agent S20 g on Ag20 or other Ag compounds. X-ray and neutron diffraction analyses show the nominal AgO unit cell to be Ag20 Ag202- Both Ag" and Ag " are present. Another compound of potentially important commercial value is Ag O, which has a unit cell of two Ag and two Ag ions. Its preparation is as follows ... [Pg.82]

Because the cytotoxic effects of the energetic lithium-7 and alpha particles are spaciaHy limited to a range of only about one-ceU diameter, the destmctive effects are confined to only one or two cells near the site of the event. Thus BNCT involves the selective deUvery of sufficiendy high concentrations of B-containing compounds to tumor sites followed by the irradiation of these sites with a beam of relatively nondestmctive thermal neutrons. The resulting cytotoxic reaction can then in theory destroy the tumor cells that are intimately associated with B target. [Pg.253]

It has been estimated that using available neutron intensities such as 10 neutrons/(cm -s) concentrations of B from 10—30 lg/g of tumor with a tumor cell to normal cell selectivity of at least five are necessary for BNCT to be practical. Hence the challenge of BNCT ties in the development of practical means for the selective deUvery of approximately 10 B atoms to each tumor cell for effective therapy using short neutron irradiation times. Derivatives of B-enriched /oj o-borane anions and carboranes appear to be especially suitable for BNCT because of their high concentration of B and favorable hydrolytic stabiUties under physiological conditions. [Pg.253]

Here Pyj is the structure factor for the (hkl) diffiaction peak and is related to the atomic arrangements in the material. Specifically, Fjjj is the Fourier transform of the positions of the atoms in one unit cell. Each atom is weighted by its form factor, which is equal to its atomic number Z for small 26, but which decreases as 2d increases. Thus, XRD is more sensitive to high-Z materials, and for low-Z materials, neutron or electron diffraction may be more suitable. The faaor e (called the Debye-Waller factor) accounts for the reduction in intensity due to the disorder in the crystal, and the diffracting volume V depends on p and on the film thickness. For epitaxial thin films and films with preferred orientations, the integrated intensity depends on the orientation of the specimen. [Pg.203]

Another major difference between the use of X rays and neutrons used as solid state probes is the difference in their penetration depths. This is illustrated by the thickness of materials required to reduce the intensity of a beam by 50%. For an aluminum absorber and wavelengths of about 1.5 A (a common laboratory X-ray wavelength), the figures are 0.02 mm for X rays and 55 mm for neutrons. An obvious consequence of the difference in absorbance is the depth of analysis of bulk materials. X-ray diffraction analysis of materials thicker than 20—50 pm will yield results that are severely surface weighted unless special conditions are employed, whereas internal characteristics of physically large pieces are routinely probed with neutrons. The greater penetration of neutrons also allows one to use thick ancillary devices, such as furnaces or pressure cells, without seriously affecting the quality of diffraction data. Thick-walled devices will absorb most of the X-ray flux, while neutron fluxes hardly will be affected. For this reason, neutron diffraction is better suited than X-ray diffraction for in-situ studies. [Pg.651]

Cells used for high-temperature measurements in furnaces often consist of silica sample tubes, supported by thin vanadium sleeves. The key to the analysis is whether it is possible to have a container that scatters in a sufficiently predictable way, so that its background contribution can be subtracted. With the current neutron flux available from both pulsed and reactor sources, sample volumes of... [Pg.130]

Special Self-shielded Irradiation Cells for Fast Neutron Activation of... [Pg.13]

The concrete block walls of the cell housing the generator tube and associated components are 1.7 meters thick. The facility also includes a Kaman Nuclear dual-axis rotator assembly for simultaneous transfer and irradiation of reference and unknown sample, and a dual Na iodide (Nal) scintillation detector system designed for simultaneous counting of activated samples. Automatic transfer of samples between load station to the rotator assembly in front of the target, and back to the count station, is accomplished pneumatically by means of two 1.2cm (i.d.) polyethylene tubes which loop down at both ends of the system and pass underneath the concrete shielding thru a pipe duct. Total one-way traverse distance for the samples is approx 9 meters. In performing quantitative analysis for a particular element by neutron activation, the usual approach is to compare the count rates of an unknown sample with that of a reference standard of known compn irradiated under identical conditions... [Pg.358]

Several kinds of cancer therapy use radiation to destroy malignant cells. Boron neutron capture therapy is unusual in that boron-10, the isotope injected, is not radioactive. However, when boron-10 is bombarded with neutrons, it gives off highly destructive a particles. In boron neutron capture therapy, the boron-10 is incorporated into a compound that is preferentially absorbed by tumors. The patient is then exposed to brief periods of neutron bombardment. As soon as the bombardment ceases, the boron-10 stops generating a particles. [Pg.827]

Fig. 6.5. Coherent structure function S(q) in absolute units in comparison to amorphous cell simulations [194] and neutron scattering data [185]... Fig. 6.5. Coherent structure function S(q) in absolute units in comparison to amorphous cell simulations [194] and neutron scattering data [185]...

See other pages where Neutron cell is mentioned: [Pg.130]    [Pg.130]    [Pg.122]    [Pg.130]    [Pg.178]    [Pg.183]    [Pg.130]    [Pg.130]    [Pg.122]    [Pg.130]    [Pg.178]    [Pg.183]    [Pg.1381]    [Pg.2373]    [Pg.207]    [Pg.488]    [Pg.488]    [Pg.488]    [Pg.497]    [Pg.499]    [Pg.554]    [Pg.360]    [Pg.654]    [Pg.656]    [Pg.166]    [Pg.1215]    [Pg.130]    [Pg.757]    [Pg.388]    [Pg.388]    [Pg.115]    [Pg.64]    [Pg.271]    [Pg.122]    [Pg.48]    [Pg.49]    [Pg.135]    [Pg.143]    [Pg.144]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



© 2024 chempedia.info