Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutral species, interaction between

When Pitzer developed these equations, the ultimate form for describing the interaction terms was based on both theoretical models and experimental data. On the other hand, the number of terms to include in the equations is left to the user s discretion. For example, are neutral-neutral species interaction terms needed In some applications, yes in other applications, no. See Harvie et al. (1984), He and Morse (1993), and Pitzer (1995) for examples where different terms were selected. In what follows, we will specify the exact form of the Pitzer equations used in the FREZCHEM model. For a discussion of the connection between these equations (2.39 to 2.42) and Eq. 2.38, see Pitzer (1991, 1995). [Pg.11]

The spectra of an organic compound in various solvents differ only in small detail so long as no serious interaction takes place between solute and solvent. Thus the spectrum of a substance in an aprotic solvent (e.g. cyclohexane) should be almost the same as that in water. When addition of water occurs across a C=N bond, the spectrum of the hydrate in water can be vastly different from the spectrum of the anhydrous substance in cyclohexane, and this test has been used on several occasions determine whether or not a neutral species... [Pg.7]

Cations are by no means the only species where the effects of hyperconjugative delocalization reveal themselves in such a striking manner. Similar effects exist in neutral systems or in anions. For instance, the normal propyl anion should tend to be eclipsed (E) since in this manner the molecule would optimize the 4-electron interactions between the ethyl group t orbital and the p orbital which carries the electron pair. In the bisected conformation, where ttchs and ttchs have both been raised in energy, the four-electron, destabilizing (see Section 1.7, rule 2) p ->7r interaction is stronger than in the eclipsed conformation. At the same time the two-electron, stabilizing p ->ir interaction is weaker than in the eclipsed conformation. Both effects favor the eclipsed conformation. [Pg.34]

A, B and V are constant for a given solute (Eig. 12.4 shows the value of A, 0.78, for atenolol). This means that the balance between intermolecular forces varies with the system investigated as would be expected from a careful reading of Section 12.1.1.3. This can also be demonstrated by using a completely different approach to factorize log P, i.e. a computational method based on molecular interaction fields [10]. Volsurf descriptors [11] have been used to calculate log P of neutral species both in n-octanol-water and in alkane-water [10]. [Pg.323]

A comparahve analysis of coefficients and descriptors clarifies the relationship between lipophilicity and hydrophobicity (Y in Eq. 4 is the molar volume which assesses the solute s capacity to elicit nonpolar interactions (i.e. hydrophobic forces) which, as also clearly stated in the International Union of Pure and Applied Chemistry definitions [3] are not synonyms but, when only neutral species are concerned, may be considered as interchangeable. In the majority of partitioning systems, the lipophilicity is chiefly due to the hydrophobicity, as is clearly indicated by the finding that the product of numerical values of the descriptors V and of the coefficient v is larger in absolute value than the corresponding product of other couples of descriptors/coefficients [9]. This explains the very common linear rela-... [Pg.323]

Of particular interest when considering ionizable compounds is the difference of lipophilicity between the neutral species and one of its ionic forms, because ionization dramatically alters intramolecular interactions (such as electronic conjugation, internal ionic and hydrogen bonds, polarity, hydrophilic folding, and shielding). In a given solvent system, diff (log is approximately constant for compounds with similar chemical... [Pg.752]

The genesis of signals is directly connected with the interaction between the entities of the sample (see Fig. 2.13) and the form of matter and energy represented in Fig. 3.2. This interaction produces the signal as a result of a chemical reaction, an electrochemical, physicochemical or physical process, e.g. by a neutralization or precipitation reaction, an electrolytical process, or by interactions between radiation and particles on the one hand and the sample species on the other. [Pg.72]

Homogeneous catalytic processes are those in which the catalyst is dissolved in a liquid reaction medium. There are a variety of chemical species that may act as homogeneous catalysts (e.g., anions, cations, neutral species, association complexes, and enzymes). All such reactions appear to involve a chemical interaction between the catalyst and the substrate (the substance undergoing reaction). The bulk of the material in this section will focus on acid-base and enzyme catalysis. Students interested in learning more about these subjects and other aspects of homogeneous catalysis should consult appropriate texts (11-12, 16-29) or the original literature. [Pg.220]

The stability of metal ion-alkane adducts such as shown in Figure 11 remains an interesting question. The bonding in such systems can be regarded as intermolecular "agostic" interactions (46). Similar adducts between metal atoms and alkanes have been identified in low-temperature matrices (47). In addition, weakly associated complexes of methane and ethane with Pd and Pt atoms are calculated to be bound by approximately 4 kcal/mol (43). The interaction of an alkane with an ionic metal center may be characterized by a deeper well than in the case of a neutral species, in part due to the ion-polarization interaction. [Pg.34]


See other pages where Neutral species, interaction between is mentioned: [Pg.11]    [Pg.134]    [Pg.413]    [Pg.806]    [Pg.343]    [Pg.87]    [Pg.179]    [Pg.28]    [Pg.430]    [Pg.211]    [Pg.81]    [Pg.12]    [Pg.219]    [Pg.2]    [Pg.750]    [Pg.231]    [Pg.243]    [Pg.13]    [Pg.585]    [Pg.1156]    [Pg.55]    [Pg.364]    [Pg.49]    [Pg.215]    [Pg.57]    [Pg.194]    [Pg.227]    [Pg.10]    [Pg.250]    [Pg.255]    [Pg.314]    [Pg.213]    [Pg.68]    [Pg.768]    [Pg.143]    [Pg.450]    [Pg.124]    [Pg.53]    [Pg.271]    [Pg.273]    [Pg.236]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Interacting species

Neutral species

Species interaction

© 2024 chempedia.info