Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Networks dielectric

Figure C2.13.3. Schematic illustrations of various electric discharges (a) DC-glow discharge, R denotes a resistor (b) capacitively coupled RF discharge, MN denotes a matching network (c), (d) inductively coupled RF discharge, MN denotes matching network (e) dielectric barrier discharge. Figure C2.13.3. Schematic illustrations of various electric discharges (a) DC-glow discharge, R denotes a resistor (b) capacitively coupled RF discharge, MN denotes a matching network (c), (d) inductively coupled RF discharge, MN denotes matching network (e) dielectric barrier discharge.
Most glass-ceramics have low dielectric constants, typically 6—7 at 1 MHz and 20°C. Glass-ceramics comprised primarily of network formers can have dielectric constants as low as 4, with even lower values (K < 3) possible in microporous glass-ceramics (13). On the other hand, very high dielectric constants (over 1000) can be obtained from relatively depolymerized glasses with crystals of high dielectric constant, such as lead or alkaline earth titanate (11,14). [Pg.320]

Poly(vinyl acetate). The dielectric and mechanical spectra of hybrids produced by mixing a poly(vinyl acetate)—THE solution with TEOS, followed by the addition of HCl have been investigated (45). Mixtures were made which were beheved to be 0, 5, 10, 15, and 20 wt % Si02, respectively. These composites were transparent and Eourier transform infrared spectroscopy (ftir) revealed hydrogen bonding between the siUcate network and carbonyl units of the poly(vinyl acetate) (PVAc). No shift in the T of the composites from that of the pure PVAc was observed. Similarly, the activation... [Pg.329]

Electrical, electronic, and technical appHcations use polycarbonates for a variety of purposes. The woddwide market is about 156,000 t aimuaHy. Because of exceHent electrical properties (dielectric strength, volume resistivity), and resistance to heat and humidity, polycarbonate is used for electrical connectors (qv), telephone network devices, oudet boxes, etc. Polycarbonate had been popular for use in computer and business machine housings, but the use of neat resin has been largely supplanted by blends of polycarbonate with ABS. OveraH, however, the total use of polycarbonate continues to increase. [Pg.285]

J mol ). This is additional evidence in favor of rate limitation by inner diffusion. However, the same reaction in the presence of Dowex-50, which has a more open three-dimensional network, gave an activation energy of 44800 J mol , and closely similar values were obtained for the hydrolysis of ethyl acetate [29] and dimethyl seb-acate [30]. The activation energy for the hydrolysis of ethyl acetate on a macroreticular sulphonated cationic exchanger [93] is 3566 J mol . For the hydrolysis of ethyl formate in a binary system, the isocomposition activation energy (Ec) [28,92] tends to decrease as the solvent content increases, while for solutions of the same dielectric constant, the iso-dielectric activation energy (Ed) increases as the dielectric constant of the solvent increases (Table 6). [Pg.779]

The dielectric constant is the ratio of the capacity of a condenser made with a particular dielectric to the capacity of the same condenser with air as the dielectric. For a material used to support and insulate components of an electrical network from each other and ground, it is generally desirable to have a low level of dielectric constant. For a material to function as the dielectric of a capacitor, on the other hand, it is desirable to have a high value of dielectric constant, so that the capacitor may be physically as small as possible. [Pg.328]

Void-free phenolic networks can be prepared by crosslinking novolacs with epoxies instead of HMTA. A variety of difunctional and multifunctional epoxy reagents can be used to generate networks with excellent dielectric properties.2 One example of epoxy reagents used in diis manner is the epoxidized novolac (Fig. 7.34) derived from the reaction of novolac oligomers with an excess of epichlorohydrin. [Pg.411]

Phthalazinone, 355 synthesis of, 356 Phthalic anhydride, 101 Phthalic anhydride-glycerol reaction, 19 Physical properties. See also Barrier properties Dielectric properties Mechanical properties Molecular weight Optical properties Structure-property relationships Thermal properties of aliphatic polyesters, 40-44 of aromatic-aliphatic polyesters, 44-47 of aromatic polyesters, 47-53 of aromatic polymers, 273-274 of epoxy-phenol networks, 413-416 molecular weight and, 3 of PBT, PEN, and PTT, 44-46 of polyester-ether thermoplastic elastomers, 54 of polyesters, 32-60 of polyimides, 273-287 of polymers, 3... [Pg.593]

Dielectric constant (DE) values are reported as permittivity with the symbol e or K The polymer cylindrical donuts were used for the measurement of DE on a Hewlett-Packard 8510 automated network analyzer. The analyzer is capable of measuring 401 data points over a frequency band of 500 MHz to 18.5GHz. Typically Sll and S21 values, which correspond to reflection and transmission, respectively, are measured and then these values are used to calculate the permittivity and permeability. [Pg.172]

Dielectric spectroscopy, in silicone network characterization, 22 569 Dielectric stiffness, 11 93 Dielectric strength, of plastics, 19 587 of thermoplastics, 10 176... [Pg.265]

In this work, bis-phthalonitrile networks (1, 2) were examined by dynamic mechanical and dielectric methods, supplemented with infrared measurements of state of cure, DSC, vapor pressure osmometry, and solvent extraction. For resins cured with 4,4 -methylene dianiline as co-reactant, a simple network model rationalizes the data. [Pg.43]

Other efforts have also been made to modify the CL microstructure by controlling the agglomerate size in the catalyst ink. Uchida et al. [145] proposed a colloidal ink fabrication procedure using low-dielectric-constant solvents to generate a good network and a uniformity of perfluorinated... [Pg.95]

In addition to the amount of filler content, the shape, size and size distribution, surface wettability, interface bonding, and compatibility with the matrix resin of the filler can all influence electrical conductivity, mechanical properties, and other performance characteristics of the composite plates. As mentioned previously, to achieve higher electrical conductivity, the conductive graphite or carbon fillers must form an interconnected or percolated network in the dielectrical matrix like that in GrafTech plates. The interface bonding and compatibility between... [Pg.324]


See other pages where Networks dielectric is mentioned: [Pg.362]    [Pg.362]    [Pg.405]    [Pg.149]    [Pg.360]    [Pg.49]    [Pg.1500]    [Pg.1501]    [Pg.633]    [Pg.814]    [Pg.239]    [Pg.684]    [Pg.424]    [Pg.61]    [Pg.97]    [Pg.613]    [Pg.494]    [Pg.125]    [Pg.278]    [Pg.106]    [Pg.32]    [Pg.295]    [Pg.472]    [Pg.393]    [Pg.9]    [Pg.9]    [Pg.232]    [Pg.21]    [Pg.27]    [Pg.168]    [Pg.192]    [Pg.202]    [Pg.122]    [Pg.96]    [Pg.63]    [Pg.64]    [Pg.408]    [Pg.148]    [Pg.13]   
See also in sourсe #XX -- [ Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 ]




SEARCH



Dielectric Analysis of Carbon Black Networks

Rheological and Dielectric Monitoring of Network Formation

© 2024 chempedia.info