Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Navier-Stokes equations derivations

A discretized version of the steady-state incompressible Navier-Stokes equation derived from Eq. (16) can be written as... [Pg.158]

Problem 8-8. Reciprocal Theorem for the Navier-Stokes Equations. Derive the reciprocal theorem for the Navier-Stokes equations, not the Stokes equations. You should have a volume integral remaining. [Pg.584]

If these assumptions are satisfied then the ideas developed earlier about the mean free path can be used to provide qualitative but useful estimates of the transport properties of a dilute gas. While many varied and complicated processes can take place in fluid systems, such as turbulent flow, pattern fonnation, and so on, the principles on which these flows are analysed are remarkably simple. The description of both simple and complicated flows m fluids is based on five hydrodynamic equations, die Navier-Stokes equations. These equations, in trim, are based upon the mechanical laws of conservation of particles, momentum and energy in a fluid, together with a set of phenomenological equations, such as Fourier s law of themial conduction and Newton s law of fluid friction. When these phenomenological laws are used in combination with the conservation equations, one obtains the Navier-Stokes equations. Our goal here is to derive the phenomenological laws from elementary mean free path considerations, and to obtain estimates of the associated transport coefficients. Flere we will consider themial conduction and viscous flow as examples. [Pg.671]

Equations (1.6) and (1.7) are used to formulate explicit relationships between the extra stress components and the velocity gradients. Using these relationships the extra stress, t, can be eliminated from the governing equations. This is the basis for the derivation of the well-known Navier-Stokes equations which represent the Newtonian flow (Aris, 1989). [Pg.4]

As of this writing, the only practical approach to solving turbulent flow problems is to use statistically averaged equations governing mean flow quantities. These equations, which are usually referred to as the Reynolds equations of motion, are derived by Reynold s decomposition of the Navier-Stokes equations (18). The randomly changing variables are represented by a time mean and a fluctuating part ... [Pg.101]

The quantity k is related to the intensity of the turbulent fluctuations in the three directions, k = 0.5 u u. Equation 41 is derived from the Navier-Stokes equations and relates the rate of change of k to the advective transport by the mean motion, turbulent transport by diffusion, generation by interaction of turbulent stresses and mean velocity gradients, and destmction by the dissipation S. One-equation models retain an algebraic length scale, which is dependent only on local parameters. The Kohnogorov-Prandtl model (21) is a one-dimensional model in which the eddy viscosity is given by... [Pg.102]

Because the Navier-Stokes equations are first-order in pressure and second-order in velocity, their solution requires one pressure bound-aiy condition and two velocity boundaiy conditions (for each velocity component) to completely specify the solution. The no sBp condition, whicn requires that the fluid velocity equal the velocity or any bounding solid surface, occurs in most problems. Specification of velocity is a type of boundary condition sometimes called a Dirichlet condition. Often boundary conditions involve stresses, and thus velocity gradients, rather than the velocities themselves. Specification of velocity derivatives is a Neumann boundary condition. For example, at the boundary between a viscous liquid and a gas, it is often assumed that the liquid shear stresses are zero. In numerical solution of the Navier-... [Pg.634]

The full concentration equation for the contaminant may be simplified in the same manner as the Navier-Stokes equations to derive a boundary-layer approximation for the concentration, namely,... [Pg.949]

Theoretical representation of the behaviour of a hydrocyclone requires adequate analysis of three distinct physical phenomenon taking place in these devices, viz. the understanding of fluid flow, its interactions with the dispersed solid phase and the quantification of shear induced attrition of crystals. Simplified analytical solutions to conservation of mass and momentum equations derived from the Navier-Stokes equation can be used to quantify fluid flow in the hydrocyclone. For dilute slurries, once bulk flow has been quantified in terms of spatial components of velocity, crystal motion can then be traced by balancing forces on the crystals themselves to map out their trajectories. The trajectories for different sizes can then be used to develop a separation efficiency curve, which quantifies performance of the vessel (Bloor and Ingham, 1987). In principle, population balances can be included for crystal attrition in the above description for developing a thorough mathematical model. [Pg.115]

We cannot deal here with the details of the hydrodynamic Navier-Stokes equations and their consequences. For dimensional reasons one can derive the following expression [150] for the thickness of the boundary layer when the crystal rotates with angular frequency u>... [Pg.903]

This chapter is organized into two main parts. To give the reader an appreciation of real fluids, and the kinds of behaviors that it is hoped can be captured by CA models, the first part provides a mostly physical discussion of continuum fluid dynamics. The basic equations of fluid dynamics, the so-called Navier-Stokes equations, are derived, the Reynolds Number is defined and the different routes to turbulence are described. Part I also includes an important discussion of the role that conservation laws play in the kinetic theory approach to fluid dynamics, a role that will be exploited by the CA models introduced in Part II. [Pg.463]

In this section we show how the fundamental equations of hydrodynamics — namely, the continuity equation (equation 9.3), Euler s equation (equation 9.7) and the Navier-Stokes equation (equation 9.16) - can all be recovered from the Boltzman equation by exploiting the fact that in any microscopic collision there are dynamical quantities that are always conserved namely (for spinless particles), mass, momentum and energy. The derivations in this section follow mostly [huangk63]. [Pg.481]

Recall that in the continuum case we derived the Navier-Stokes equations (9.16) by allowing for the possibility of having nonzero viscous terms in the form for the momentum tensor appearing in Euler s equation (9.9). While their LG analogs may be derived in essentially the same manner, however, the lack of Galilean invariance tend to make the calculations more involved. We will outline the procedure below. [Pg.500]

Incompressible Limit In order to obtain the more familiar form of the Navier-Stokes equations (9.16), we take the low-velocity (i,e. low Mach number M = u I /cs) limit of equation 9,104, We also take a cue from the continuous case, where, if the incompressible Navier-Stokes equations are derived via a Mach-number expansion of the full compressible equations, density variations become negligible everywhere except in the pressure term [frisch87]. Thus setting p = peq + p and allowing density fluctuations only in the pressure term, the low-velocity limit of equation 9,104 becomes... [Pg.501]

Isotropy of the Momentum Flux Density Tensor If we trace back our derivation of the macroscopic LG Euler s and Navier-Stokes equations, we see that the only place where the geometry of the underlying lattice really enters is through the form for the momentum flux density tensor, fwhere cp = x ) + y ), k = 1,..., V... [Pg.502]

General equations of momentum and energy balance for dispersed two-phase flow were derived by Van Deemter and Van Der Laan (V2) by integration over a volume containing a large number of elements of the dispersed phase. A complete system of solutions of linearized Navier-Stokes equations... [Pg.386]

The system of quasi-one-dimensional non-stationary equations derived by transformation of the Navier-Stokes equations can be successfully used for studying the dynamics of two-phase flow in a heated capillary with distinct interface. [Pg.462]

Historically, gas lubrication theory was developed from the classical liquid lubrication equation—Re5molds equation [4]. The first gas lubrication equation was derived by Harrison [5] in 1913, taking the compressibility of gases into account. Because the classical gas lubrication equation is based on the Navier-Stokes equation, it does not incorporate some gas flow characteristics rooted in the rarefaction effects of dilute gases. As early as 1959, Brunner s experiment [6] showed that the classical gas lubrication equation was... [Pg.96]

Navier-Stokes equations A series of differential equations derived from Newton s second law of motion (XF = raa) that describe the relationship between fluid velocity and applied forces in a moving fluid. See Eqs. (10)—(12). [Pg.37]

Our group has made extensive use of the RNG k-e model (Nijemeisland and Dixon, 2004), which is derived from the instantaneous Navier-Stokes equations using the Renormalization Group method (Yakhot and Orszag, 1986) as opposed to the standard k-e model, which is based on Reynolds averaging. The... [Pg.319]

Throughout the book there is more explanation than in the first edition. One result of this is a lengthening of the text and it has been necessary to omit the examples of applications of the Navier-Stokes equations that were given in the first edition. However, derivation of the Navier-Stokes equations and related material has been provided in an appendix. [Pg.361]

Here we focus on yet another implementation, the single-particle hydrodynamic approach or QFD-DFT, which provides a natural link between DFT and Bohmian trajectories. The corresponding derivation is based on the realization that the density, p(r, t), and the current density, j(r, t) satisfy a coupled set of classical fluid, Navier-Stokes equations ... [Pg.110]

The model turbulent energy spectrum given in (2.53) was introduced to describe fully developed turbulence, i.e., the case where / , (/<. t) does not depend explicitly on t. The case where the turbulent energy spectrum depends explicitly on time can be handled by deriving a transport equation for the velocity spectrum tensor 4> (k, t) starting from the Navier-Stokes equation for homogeneous velocity fields with zero or constant mean velocity (McComb 1990 Lesieur 1997). The resultant expression can be simplified for isotropic turbulence to a transport equation for / ,(/<. t) of the form14... [Pg.60]

In Section 3.3, we will use (3.16) with the Navier-Stokes equation and the scalar transport equation to derive one-point transport equations for selected scalar statistics. As seen in Chapter 1, for turbulent reacting flows one of the most important statistics is the mean chemical source term, which is defined in terms of the one-point joint composition PDF +(+x, t) by... [Pg.86]

This chapter is devoted to methods for describing the turbulent transport of passive scalars. The basic transport equations resulting from Reynolds averaging have been derived in earlier chapters and contain unclosed terms that must be modeled. Thus the available models for these terms are the primary focus of this chapter. However, to begin the discussion, we first review transport models based on the direct numerical simulation of the Navier-Stokes equation, and other models that do not require one-point closures. The presentation of turbulent transport models in this chapter is not intended to be comprehensive. Instead, the emphasis is on the differences between particular classes of models, and how they relate to models for turbulent reacting flow. A more detailed discussion of turbulent-flow models can be found in Pope (2000). For practical advice on choosing appropriate models for particular flows, the reader may wish to consult Wilcox (1993). [Pg.119]

It can be easily shown (Pope 2000) that filtering and space/time derivatives commute in homogeneous flows. The filtered Navier-Stokes equation can thus be expressed as... [Pg.124]

A number of authors from Ladenburg (LI) to Happel and Byrne (H4) have derived such correction factors for the movement of a fluid past a rigid sphere held on the axis of symmetry of the cylindrical container. In a recent article, Brenner (B8) has generalized the usual method of reflections. The Navier-Stokes equations of motion around a rigid sphere, with use of an added reflection flow, gives an approximate solution for the ratio of sphere velocity in an infinite space to that in a tower of diameter Dr ... [Pg.66]

Recently, a set of correlations including the effect of channel shape has been proposed by Ramanathan et al. (2003) on the basis of solution of the Navier-Stokes equations in the channel, with different solutions derived for ignited-reaction and extinct-reaction regimes. The comparison of various empirical and theoretical correlations with experimentally evaluated mass transfer coefficients is given by West et al. (2003). The correlations by Ramanathan et al. (2003) or Tronconi and Forzatti (1992) have been used in most simulations presented in this chapter. [Pg.116]

The viscosity of the medium is t, and 1 is the unit tensor. (The Oseen tensor is the Green s function for the Navier-Stokes equation under the conditions that the fluid is incompressible, convective effects can be neglected, and inertial effects coming from the time derivative can be neglected.)... [Pg.327]

The force per unit volume f, which is needed in the derivation of the Navier-Stokes equations, is determined easily by considering a vanishingly small control volume such that the integrand approaches a constant. That is,... [Pg.45]

Determine the principal axes for the stress tensor. Why are the principal directions the same for the full stress tensor and the deviatoric stress tensor How does this result relate to the Stokes postulates that are used in the derivation of the Navier-Stokes equations ... [Pg.66]

The Navier-Stokes equations have been derived and written in a form that exposes V-V explicitly. In large measure this is done in anticipation of the simplifications that accrue for incompressible flow where V-V = 0. It is also important to recognize situations in which compressible fluids (i.e., gases) behave as though they were incompressible, thus permitting the incompressible-flow simplifications. [Pg.83]

One important purpose of the energy equation is to describe and predict the fluid temperature fields. The energy equation will be closely coupled to the Navier-Stokes equations, which describe the velocity fields. The coupling comes through the convective terms in the substantial derivative, which, of course, involve the velocities. The Navier-Stokes equations are also coupled to the energy equation, since the density and other properties usually depend on temperature. Chemical reaction and molecular transport of chemical species can also have a major influence on the thermal energy of a flow. [Pg.101]

A vorticity-transport equation can be derived by taking the taking the vector curl of the full Navier-Stokes equations. For incompressible flows with constant viscosity, the vorticity-transport equation can be expressed in a form that is quite similar to the other transport equations. Begin with the full Navier-Stokes equations, which for constant viscosity can be written in compact vector form as (Eq. 3.61)... [Pg.124]


See other pages where Navier-Stokes equations derivations is mentioned: [Pg.340]    [Pg.340]    [Pg.121]    [Pg.5]    [Pg.79]    [Pg.288]    [Pg.88]    [Pg.636]    [Pg.672]    [Pg.24]    [Pg.318]    [Pg.127]    [Pg.234]    [Pg.29]    [Pg.563]    [Pg.390]    [Pg.59]    [Pg.126]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Derivatives equations

Equation Navier-Stokes

Equation derivation

Navier Stokes equation flow models derived from

Navier equations

Navier-Stokes

Stokes derivative

Stokes equation

© 2024 chempedia.info