Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphthalene polymerization

The radical-anion proceeds to propagate in the same manner as discussed above for initiation by sodium naphthalene. (Polymerizations in liquid ammonia are very different from those in organic solvents in that free ions probably constitute the major portion of propagating species.)... [Pg.415]

The sodium naphthalene polymerization of methyl methacrylate is carried out in benzene and tetrahydrofuran solutions. Which solution will yield the highest polymerization rate Discuss the effect of solvent on the relative concentrations of the different types of propagating centers. [Pg.462]

Smith (29) showed that the polymerization of styrene by sodium ketyls with excess sodium produced low yields of isotactic polystyrene. Smith also believed that sodium ketyls initiated the styrene polymerization in the same way as the anionic alfin catalyst. Das, Feld and Szwarc (30) proposed that the lithium naphthalene polymerization of styrene occured through an anionic propagating species arising from the dissociation of the alkyllithium into ion pairs. These could arise from the dimeric styryllithium as a dialkyllithium anion and a lithium cation... [Pg.361]

Problem 8.4 In an experiment (Szwarc et al., 1956), styrene (9.2 g) was added to 60 mL of tetrahydrofuran containing 3.3x10 mol of sodium naphthalene. Polymerization was carried out at -80°C and after completion (as determined by constant viscosity) an additional 7.7 g of styrene in 50 mL of tetrahydrofuran was added. The final yield was 16.6 g of polystyrene, i.e., about 100% conversion. Calculate the average molecular weight of the final polymer. [Pg.489]

Dimethyl acetylenedicarboxylate (DMAD) (125) is a very special alkyne and undergoes interesting cyclotrimerization and co-cyclization reactions of its own using the poorly soluble polymeric palladacyclopentadiene complex (TCPC) 75 and its diazadiene stabilized complex 123 as precursors of Pd(0) catalysts, Cyclotrimerization of DMAD is catalyzed by 123[60], In addition to the hexa-substituted benzene 126, the cyclooctatetraene derivative 127 was obtained by the co-cyclization of trimethylsilylpropargyl alcohol with an excess of DMAD (125)[6l], Co-cyclization is possible with various alkenes. The naphthalene-tetracarboxylate 129 was obtained by the reaction of methoxyallene (128) with an excess of DMAD using the catalyst 123[62],... [Pg.487]

Aromatic radical anions, such as lithium naphthalene or sodium naphthalene, are efficient difunctional initiators (eqs. 6,7) (3,20,64). However, the necessity of using polar solvents for their formation and use limits their utility for diene polymerization, since the unique abiUty of lithium to provide high 1,4-polydiene microstmcture is lost in polar media (1,33,34,57,63,64). Consequentiy, a significant research challenge has been to discover a hydrocarbon-soluble dilithium initiator which would initiate the polymerization of styrene and diene monomers to form monomodal a, CO-dianionic polymers at rates which are faster or comparable to the rates of polymerization, ie, to form narrow molecular weight distribution polymers (61,65,66). [Pg.239]

Copolymers of diallyl itaconate [2767-99-9] with AJ-vinylpyrrolidinone and styrene have been proposed as oxygen-permeable contact lenses (qv) (77). Reactivity ratios have been studied ia the copolymerization of diallyl tartrate (78). A lens of a high refractive iadex n- = 1.63) and a heat distortion above 280°C has been reported for diallyl 2,6-naphthalene dicarboxylate [51223-57-5] (79). Diallyl chlorendate [3232-62-0] polymerized ia the presence of di-/-butyl peroxide gives a lens with a refractive iadex of n = 1.57 (80). Hardness as high as Rockwell 150 is obtained by polymerization of triaHyl trimeUitate [2694-54-4] initiated by benzoyl peroxide (81). [Pg.87]

Another method which might avoid the problems associated with natural pitch feeds involves producing mesophase from a synthetic precursor. Recently, Mochida et al. [30] developed a process in which mesophase is produced by the polymerization of naphthalene or methyl naphthalene, with the aid of a HF/BF3... [Pg.127]

The raw material has to be washed to remove impurities. Diluted sodium hydroxide allows the removal of phenols and benzonitrile, and diluted sulphuric acid reacts with pyridine bases. The resulting material is distilled to concentrate the unsaturated compounds (raw feedstock for coumarone-indene resin production), and separate and recover interesting non-polymerizable compounds (naphthalene, benzene, toluene, xylenes). Once the unsaturated compounds are distilled, they are treated with small amounts of sulphuric acid to improve their colour activated carbons or clays can be also used. The resulting material is subjected to polymerization. It is important to avoid long storage time of the feedstock because oxidation processes can easily occur, affecting the polymerization reaction and the colour of the coumarone-indene resins. [Pg.604]

IV-substituted and B-substituted borazines are readily prepared by suitable choice of amine and borane starting materials or by subsequent reaction of other borazines with Grignard reagents, etc. Thermolysis of monocyclic borazines leads to polymeric materials and to polyborazine analogues of naphthalene, biphenyl, etc. ... [Pg.211]

Although the sulfone activated biphenyl and the ketone activated naphthalene moiety for the displacement polymerization have been reported by Attwood et al. [11], these were rediscovered by Cummings et al. [12] and Hergenrother et al. [13], respectively, for the synthesis of poly(aryl ethers). Recently, Singh and Hay [14] reported polymers containing 0-dibenzoyl benzene (1,2,3) moiety by reaction between bis(O-fluorobenzoyl) benzene or substituted benzene with bisphenates of alkali metal salt in DMAC as follows ... [Pg.36]

Addition of styrene to a green solution of naphthalene" Na+ in tetrahydrofuran leads to an instantaneous change of color from green to red. Styrene polymerizes rapidly and quantitatively within a few seconds, and when the reaction is completed, addition of water converts the red solution of polystyryl carbanions into colorless solution of polystyrene. After precipitation of the polymer it was shown spectroscopically25 that the residual solution contains an amount of naphthalene equal to that used in the preparation of the initiating catalyst. This observation confirms the proposed mechanism of initiation of the polymerization. [Pg.154]

Polymerization of ethylene oxide might be initiated by electron transfer process if metallic Na or Li is used as an initiator. On the other hand, initiation by sodium naphthalene involves not electron transfer but addition to naphthalene- ion. [Pg.156]

The polymerization of 2-furaldehyde by sodium and sodium naphthalene reported by Kulakov and Kamenskii151 did not produce structure 32, but rather some resinous oligomeric materials formed through the interactions of the furan ring with the formyl group. [Pg.85]

Thus, the photo-activity of poly[bis(4-benzoylphenoxy)phosphazene] under illumination could be finely tuned by irradiating the polymer in the presence of variable amount of naphthalene, a typical triplet state energy quencher [474]. The same polymer could be used as polymeric photosensitizer to induce the... [Pg.224]

Allylchlorosilanes reacted with naphthalene to give isomeric mixtures of poly-alkylated products. However, it was difficult to distill and purify the products for characterization from the reaction mixture due to the high boiling points of the products and the presence of many isomeric compounds. The alkylation of anthracene with allylchlorosilanes failed due to deactivation by complex formation w ith anthracene and the self-polymerization of anthracene to solid char. [Pg.155]

Poly(l,4-naphthylenevinylene) (106) is accessible via the Wessling polymerization procedure. Lenz, Karasz, Wegner et al. have published the synthesis of PNV 106, starting from l,4-bis(chloromethyl)naphthalene [127, 128]. The poly(l,4-naphthylenevinylene) (106) displays an optical absorption energy of 2.05 eV, slightly red-shifted by about 0,3 eV relative to the parent PPV 60-system, due to the electronic effect of the annelated benzene ring. [Pg.212]


See other pages where Naphthalene polymerization is mentioned: [Pg.435]    [Pg.122]    [Pg.674]    [Pg.435]    [Pg.191]    [Pg.435]    [Pg.122]    [Pg.674]    [Pg.435]    [Pg.191]    [Pg.505]    [Pg.490]    [Pg.124]    [Pg.734]    [Pg.155]    [Pg.57]    [Pg.71]    [Pg.72]    [Pg.72]    [Pg.804]    [Pg.201]    [Pg.154]    [Pg.163]    [Pg.17]    [Pg.190]    [Pg.521]    [Pg.400]    [Pg.392]    [Pg.170]    [Pg.271]    [Pg.18]    [Pg.19]    [Pg.22]    [Pg.26]   
See also in sourсe #XX -- [ Pg.770 ]




SEARCH



Free-radical polymerization naphthalene)

Naphthalene sodium anionic polymerization

Sodium naphthalene polymerization

Styrene sodium naphthalene polymerized

© 2024 chempedia.info