Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple quantum coherence, among

One of the more recent applications of proton NMR in solid polymers has been the use of multiple quantum coherence (MQCOH), which is developed among clusters of dipolar coupled protons vide infra) to infer details of chain dynamics [20], and (which is another way of making the same statement) local dipolar couplings [21]. [Pg.171]

Here we extend the simple three-level EIT system to mote complicated and versatile configurations in a multi-level atomic system coupled by multiple laser fields. We show that with multiple excitation paths provided by different laser fields, phase-dependent quantum interference is induced either constractive or destractive interfereiKe can be realized by varying the relative phases among the laser fields. Two specific examples are discussed. One is a three-level system coupled by bichromatic coupling and probe fields, in which the phase dependent interference between the resonant two-photon Raman transitions can be initiated and controlled. Another is a four-level system coupled by two coupling fields and two probe fields, in which a double-EIT confignration is created by the phase-dependent interference between three-photon and one-photon excitation processes. We analyze the coherently coupled multi-level atomic system and discuss the control parameters for the onset of constructive or destructive quantum interference. We describe two experiments performed with cold Rb atoms that can be approximately treated as the coherently coupled three-level and four-level atomic systems respectively. The experimental results show the phase-dependent quantum coherence and interference in the multi-level Rb atomic system, and agree with the theoretical calculations based on the coherently coupled three-level or four-level model system. [Pg.21]

The atomic coherence and interference phenomenon in the simple three-level system sueh as EIT can be extended to more eomplicated multi-level atomic systems. A variety of other phenomena and applications involving three or four-level EIT systems have been studied in reeent years. In particular, phase-dependent atomic coherence and interference has been explored [52-66]. These studies show that in multi-level atomic systems coupled by multiple laser fields, there are often various types of nonlinear optical transitions involving multiple laser fields and the quantum interference among these transition paths may exhibit complicated spectral and dynamic features that can be manipulated with the system parameters such as the laser field amplitudes and phases. Here we present two examples of such coherently coupled multi-level atomic systems in which the quantum interference is induced between two nonlinear transition paths and can be eontrolled by the relative phase of the laser fields. [Pg.22]

Phase-dependent coherence and interference can be induced in a multi-level atomic system coupled by multiple laser fields. Two simple examples are presented here, a three-level A-type system coupled by four laser fields and a four-level double A-type system coupled also by four laser fields. The four laser fields induce the coherent nonlinear optical processes and open multiple transitions channels. The quantum interference among the multiple channels depends on the relative phase difference of the laser fields. Simple experiments show that constructive or destructive interference associated with multiple two-photon Raman channels in the two coherently coupled systems can be controlled by the relative phase of the laser fields. Rich spectral features exhibiting multiple transparency windows and absorption peaks are observed. The multicolor EIT-type system may be useful for a variety of application in coherent nonlinear optics and quantum optics such as manipulation of group velocities of multicolor, multiple light pulses, for optical switching at ultra-low light intensities, for precision spectroscopic measurements, and for phase control of the quantum state manipulation and quantum memory. [Pg.35]


See other pages where Multiple quantum coherence, among is mentioned: [Pg.166]    [Pg.166]    [Pg.764]    [Pg.479]    [Pg.289]    [Pg.83]    [Pg.437]    [Pg.156]    [Pg.70]    [Pg.403]    [Pg.1]    [Pg.601]    [Pg.239]   


SEARCH



Multiple-quantum coherence

Quantum coherence

© 2024 chempedia.info