Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multidimensional liquid column chromatography

Multidimensional Column Liquid Chromatography (LC) in Proteomics - Where Are We Now ... [Pg.89]

C. Corradini, Coupled-column liquid chromatography, in Multidimensional Chromatography, L. Mondello, C. Lewis, K.D. Bartle (Eds.) John Wiley Sons, Chichester, U.K., 2001, pp. 109-129. [Pg.116]

Figure 12.8 Mia ocolumn size exclusion chromatogram of a styrene-aaylonitrile copolymer sample fractions ti ansfeired to the pyrolysis system are indicated 1-6. Conditions fused-silica column (50 cm X 250 p.m i.d.) packed with Zorbax PSM-1000 (7p.m 4f) eluent, THF flow rate, 2.0 p.L/min detector, Jasco Uvidec V at 220 nm injection size, 20 nL. Reprinted from Analytical Chemistry, 61, H. J. Cortes et al, Multidimensional chromatography using on-line microcolumn liquid chromatography and pyrolysis gas chromatography for polymer characterization , pp. 961 -965, copyright 1989, with peimission from the American Chemical Society. Figure 12.8 Mia ocolumn size exclusion chromatogram of a styrene-aaylonitrile copolymer sample fractions ti ansfeired to the pyrolysis system are indicated 1-6. Conditions fused-silica column (50 cm X 250 p.m i.d.) packed with Zorbax PSM-1000 (7p.m 4f) eluent, THF flow rate, 2.0 p.L/min detector, Jasco Uvidec V at 220 nm injection size, 20 nL. Reprinted from Analytical Chemistry, 61, H. J. Cortes et al, Multidimensional chromatography using on-line microcolumn liquid chromatography and pyrolysis gas chromatography for polymer characterization , pp. 961 -965, copyright 1989, with peimission from the American Chemical Society.
Figure 15.5 Separation of Voriconazole and an internal standard by using SEC-HPLC. Adapted from Journal of Chromatography, B 691, D.A. Stopher and R. Gage, Determination of a new antifungal agent, voriconazole, by multidimensional high-perfomiance liquid chromatography with direct plasma injection onto a size exclusion column , pp. 441 -448, copyright 1997, with permission from Elsevier Science. Figure 15.5 Separation of Voriconazole and an internal standard by using SEC-HPLC. Adapted from Journal of Chromatography, B 691, D.A. Stopher and R. Gage, Determination of a new antifungal agent, voriconazole, by multidimensional high-perfomiance liquid chromatography with direct plasma injection onto a size exclusion column , pp. 441 -448, copyright 1997, with permission from Elsevier Science.
Multidimensional liquid chromatography encompasses a variety of techniques used for seunple separation, cleanup and trace enrichment [12,279-289]. A characteristic feature of these methods is the use of two or more columns for the separation with either manual or automatic switching by a valve interface of fractions between columns. These techniques require only minor modification to existing equipment, and of equal importance, enable the sample preparation and separation procedures to be completely automated. [Pg.411]

SEC in combination with multidimensional liquid chromatography (LC-LC) may be used to carry out polymer/additive analysis. In this approach, the sample is dissolved before injection into the SEC system for prefractionation of the polymer fractions. High-MW components are separated from the additives. The additive fraction is collected, concentrated by evaporation, and injected to a multidimensional RPLC system consisting of two columns of different selectivity. The first column is used for sample prefractionation and cleanup, after which the additive fraction is transferred to the analytical column for the final separation. The total method (SEC, LC-LC) has been used for the analysis of the main phenolic compounds in complex pyrolysis oils with minimal sample preparation [974]. The identification is reliable because three analytical steps (SEC, RPLC and RPLC) with different selectivities are employed. The complexity of pyrolysis oils makes their analysis a demanding task, and careful sample preparation is typically required. [Pg.555]

One attempt to overcome these disadvantages has been to use multidimensional liquid chromatography (LC) followed directly by tandem mass spectrometry to separate, fragment and identify proteins (Link et al., 1999). In this process, a denatured and reduced protein mixture is digested with a protease to create a collection of peptides (Fig. 2.6). The peptide mixture is applied to a cation exchange column and a fraction of these peptides are eluted based on charge onto a reverse-phase column. The... [Pg.15]

At least two driving forces have contributed to the recent increased use and development of multidimensional liquid chromatography (MDLC). These include the high resolution and peak capacity needed for proteomics studies and the independent size and chemical structure selectivity for resolving industrial polymers. In this regard, separation science focuses on a system approach to separation as individual columns can contribute only part of the separation task and must be incorporated into a larger separation system for a more in-depth analytical scheme. [Pg.489]

We have purposely narrowed the scope of all multidimensional chromatography to those techniques that incorporate separations in the liquid phase and to those in which the use of the comprehensive mode prevails but is not exclusive. This text neither incorporates elements of multidimensional thin-layer chromatography, multidimensional separations in gel media such as those commonly employed for the separation of complex mixtures of proteins, nor the techniques that utilize multidimensional gas chromatography. Some of the same principles apply, particularly in the theory section, but our emphasis is strictly on separations carried out in the liquid phase and by columns, rather than in the gas phase or in planar configurations. [Pg.490]

The peak focusing allows injections of the extremely large sample volumes, which may easily reach 10% of the total volume of the LC LC columns. This is an important advantage considering the two-dimensional liquid chromatography. For example, the LC LC column effluent can be directly forwarded into an online SEC column for further separa-tion/characterization. The LC LC principle can be applied not only for polymer separations but also for reconcentration of polymer solutions, for example, of (diluted) effluents leaving other columns applied in polymer HPLC. This may be utilized in the multidimensional polymer HPLC. [Pg.484]

A certain amount of qualitative information can be obtained by means of so-called multidimensional chromatography (1). Tlris is a combination of different chromatographic techniques in which fractions from a primary separation step are transferred online to a secondary separation step. Multidimensional gas chromatography (GC), for example, involves coupling of GC columns of different selectivities so that the primary column isolates the fraction of interest, and the secondary column takes care of the final separation of that fraction. Using multidimensional liquid chromatography (LC), determination of androgen hormone residues in cattle liver has been possible (2). [Pg.722]


See other pages where Multidimensional liquid column chromatography is mentioned: [Pg.111]    [Pg.111]    [Pg.428]    [Pg.2621]    [Pg.2622]    [Pg.2697]    [Pg.2698]    [Pg.124]    [Pg.109]    [Pg.147]    [Pg.250]    [Pg.251]    [Pg.410]    [Pg.411]    [Pg.248]    [Pg.402]    [Pg.920]    [Pg.545]    [Pg.551]    [Pg.4]    [Pg.5]    [Pg.5]    [Pg.93]    [Pg.127]    [Pg.218]    [Pg.219]    [Pg.320]    [Pg.487]    [Pg.102]    [Pg.374]   


SEARCH



Column chromatography

Column chromatography columns

Liquid chromatography columns

Liquid column

Multidimensional chromatography

Multidimensional liquid chromatography

© 2024 chempedia.info