Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multicopper ceruloplasmin

Figure 12.4 Proposed path for the intracellular transfer of Cu(I) by Atxl. Copper destined for incorporation into the vascular multicopper oxidase Fet3 requires both Ctrl and Ccc2. Cytoplasmic Cu(I)-Atxl, but not apo-Atxl, associates with the amino-terminal domain of Ccc2 and Cu(I) is transferred to the latter. (Inset) A proposed mechanism for the exchange of Cu(I) involving two- and three-coordinate Cu-bridged intermediates. The human homologues of Atxl (Hahl), Ccc2 (Menkes and Wilson s proteins) and Fet3 (ceruloplasmin) are likely to employ similar mechanisms. Reprinted with permission from Pufahl et al., 1997. Copyright (1997) American Association for the Advancement of Science. Figure 12.4 Proposed path for the intracellular transfer of Cu(I) by Atxl. Copper destined for incorporation into the vascular multicopper oxidase Fet3 requires both Ctrl and Ccc2. Cytoplasmic Cu(I)-Atxl, but not apo-Atxl, associates with the amino-terminal domain of Ccc2 and Cu(I) is transferred to the latter. (Inset) A proposed mechanism for the exchange of Cu(I) involving two- and three-coordinate Cu-bridged intermediates. The human homologues of Atxl (Hahl), Ccc2 (Menkes and Wilson s proteins) and Fet3 (ceruloplasmin) are likely to employ similar mechanisms. Reprinted with permission from Pufahl et al., 1997. Copyright (1997) American Association for the Advancement of Science.
Copper oxidases Blue oxidases (multicopper oxidases) Laccase Ascorbate oxidase Ceruloplasmin... [Pg.191]

The hemocyanlns which cooperatively bind dioxygen are found in two invertebrate phyla arthropod and mollusc. The mollusc hemocyanlns additionally exhibit catalase activity. Tyrosinase, which also reversibly binds dioxygen and dlsmutates peroxide, is a monooxygenase, using the dloxygen to hydroxylate monophenols to ortho-diphenols and to further oxidize this product to the quinone. Finally, the multicopper oxidases (laccase, ceruloplasmin and ascorbate oxidase) also contain coupled binuclear copper sites in combination with other copper centers and these catalyze the four electron reduction of dloxygen to water. [Pg.117]

Type 3, Cu, also present in multicopper oxidases, is the ESR-silent Cu ions, either Cu1 or binuclear coupled Cu11 ions. Both may be present in some cases, e.g. ceruloplasmin.140 The binuclear centres give rise to intense absorptions around 330 nm and may be dioxygen coordination sites. [Pg.772]

Copper has an essential role in a number of enzymes, notably those involved in the catalysis of electron transfer and in the transport of dioxygen and the catalysis of its reactions. The latter topic is discussed in Section 62.1.12. Hemocyanin, the copper-containing dioxygen carrier, is considered in Section 62.1.12.3.8, while the important role of copper in oxidases is exemplified in cytochrome oxidase, the terminal member of the mitochondrial electron-transfer chain (62.1.12.4), the multicopper blue oxidases such as laccase, ascorbate oxidase and ceruloplasmin (62.1.12.6) and the non-blue oxidases (62.12.7). Copper is also involved in the Cu/Zn-superoxide dismutases (62.1.12.8.1) and a number of hydroxylases, such as tyrosinase (62.1.12.11.2) and dopamine-jS-hydroxylase (62.1.12.11.3). Tyrosinase and hemocyanin have similar binuclear copper centres. [Pg.648]

Blue Multicopper Oxidases. These include laccases, ascorbate oxidase, and ceruloplasmin [22,61], which along with cytochrome c oxidase (CcO with Fe and Cu) can couple the one-electron oxidation of substrates (e.g., ascorbate, diamines, monophenols Fe2+ for ceruloplasmin cytochrome c, for CcO) to the full reduction of dioxygen to water (i.e., 02 + 4c + H+ —> 2H20). [Pg.478]

Some proteins contain more than one copper site, and are therefore among the most complicated and least understood of all. The active site known as type 4 is usually composed of a type 2 and a type 3 active site, together forming a trinuclear cluster. In some cases, such proteins also contain at least one type 1 site and are in this case termed multicopper oxidases, or blue oxidases [3], Representatives of this class are laccase (polyphenol oxidase) [7-9], ascorbate oxidase (Figure 5.Id) [10], and ceruloplasmin [11], which catalyze a range of organic oxidation reactions. [Pg.104]

The enzyme catalyses the oxidation of L-ascorbic acid, 4, to dehydroascorbic, 5. The blue protein belongs to the group of blue oxidases together with laccase and ceruloplasmin. These are multicopper enzymes catalysing the electron reduction of molecular oxygen to water with concomitant one electron oxidation of the substrate. [Pg.132]

The multicopper oxidases (laccase, ascorbate oxidase, and ceruloplasmin) catalyze a four-electron reduction of dioxygen to water (285-287). Consistent with the four-electron stoichiometry, the enzymes contain four copper ions. One of the copper ions is type I, causing an intensely blue color of the proteins, thus the enzymes of this family are referred to as blue oxidases. They also contain a monomeric copper site that exhibits normal spectroscopic features, whereas the other two copper... [Pg.63]

Based on present sequence data, known or likely ferroxidase enzymes can be identihed in several eukaryotes. These enzymes are listed in Table 11. All are multicopper oxidases, by sequence homology at least. In mammals, they include ceruloplasmin and, most likely, hephaestin (Hp), although only mouse Hp (mHp) has been characterized at this time (Vulpe et al., 1999). The alignments in Fig. 5A show that mHp is essentially... [Pg.229]

The second class consists of multidomain blue copper proteins composed of exclusively two or more BCB domains and includes nitrite reductase (Section IV, E), multicopper blue oxidases such as laccase, ascorbate oxidase, ceruloplasmin, and hephaestin (Section VII), and some sequences found in extreme halophilic archaea (see Section V, E). [Pg.273]

Multicopper blue oxidases are synthesized as a single polypeptide chain, which is composed of three BCB domains in the case of laccases (LC) and ascorbate oxidases (AO) and six such domains in ceruloplasmin (CP) and hephaestin (HP). Structurally they are arranged in a triangular manner. These enzymes, along with heme-copper oxidases (cytochrome c oxidases and quinol-oxidases) and a cyanide-resistant alternative oxidase found in mitochondria of plants and fungi, are the only known enzymes capable of catalyzing four-electron reduction of dioxygen to water. In the... [Pg.312]

A second member of the ceruloplasmin family multicopper oxidases with six BCB domains was recently identified as the causative agent of sex-linked anemia (sla) in mice (Vulpe et al., 1993). It was named hephaes-tin and shown to be expressed mostly in the small intestine and the colon, where it is presumably involved in gastrointestinal iron uptake. Hephaes-tin displays a high level of sequence identity to ceruloplasmin and differs from it only by an additional C-terminal transmembrane domain, which anchors the protein to the cell membrane. A 582-nucleotide in-frame deletion in the mRNA for hephaestin sla mice has been identified compared to normal animals. The mice with such a mutation are unable to release iron from enterocytes (intestinal epithelial cells) into the circulation, which results in severe anemia. The GPI-anchored form of ceruloplasmin could potentially also mediate similar cellular iron efflux in the central nervous system. There is a transferrin-independent iron uptake system that requires Fe(III) to be reduced to Fe(II) at the cell surface for uptake to occur (DeSilva et al., 1996). Ceruloplasmin would oxidize Fe and prevent its uptake by this mechanism. Briefly, the role of ceruloplasmin is most likely to prevent excessive intracellular iron accumulation by tightly controlling iron efflux and inhibiting its uptake. [Pg.321]

In the yeast Sa. cerevisiae the functional homologue of ceruloplasmin is Fet3. It is a multicopper oxidase that displays ferroxidase activity similar... [Pg.321]

In the area of copper metabolism, four topics are covered bacterial copper transport reviewed by Huat Lu and Sohoz copper P-type ATPases reviewed by Voskoboinik, Camakaris, and Mercer copper chaperones reviewed by Stine Elam et al. and copper metaUoregulation of gene expression reviewed by Winge. An important related topic is the link between copper and iron metabolism. In this area, Kosman has reviewed the multicopper oxidase enzymes, such as FetSp and ceruloplasmin, which catalyze the conversion of iron(II) to iron(III) in preparation for its specific transport by partner transporter proteins. [Pg.504]

AO = Ascorbate oxidase (h)Cp = (human) Ceruloplasmin CT = Charge transfer Hp = Hephaestin GPl = Glycosyl-phosphatidylinositol Lac = Laccase MCO = Multicopper oxidase T1(2,3)D = Type 1 depleted (and/or type 2 or type 3) Tf = Transferrin. [Pg.990]

Once inside the mucosal cell, iron then has to be transported across the membrane to serum transferrin. This appears to take place via the Iregl transporter protein (also known as ferroportin 1 or MTPl). Iregl is a transmembrane protein located at the basolateral membrane of the cell that has been shown to be involved in iron uptake. Oxidation of Iregl-bound ferrous iron and its release to transferrin is likely to be enhanced by the membrane-bound multicopper ferroxidase hephaestin. This protein is 50% identical to ceruloplasmin, a soluble protein identified as having a possible role in iron loading of transferrin see Copper Proteins Oxidases). Mutation of hephaestin in mice leads to a build up of iron in duodenal cells and overall iron deficiency in the body. ... [Pg.2272]

The disturbance of copper excretion, primarily due to a defect in the billiary excretion, is consistent with the biochemical findings in patients with Wilson disease. Urinary copper excretion is increased owing to total body overload of copper. Renal dysfunction includes albuminuria and renal rickets. Incorporation of copper in ceruloplasmin is impaired. Thus, there is a greater proportion of copper bound to albumin and amino acid complexes in the serum. But the overall copper concentration in serum is low. Ceruloplasmin is a multicopper oxidase see Copper Proteins Oxidases) that... [Pg.5384]

The high-affinity pathway involves oxidation of Fe to Fe by the ferroxidase FET3 and subsequent transport of Fe " " across the plasma membrane by the permease FTRl. FET3p is a member of the family of multicopper oxidases, which include ascorbate oxidase, laccase, and ceruloplasmin (see Chapter 14), and does not become functional until it is loaded with copper intracellularly through the activities of the copper chaperone ATX Ip and the copper transporter CCC2p. It appears that Fe " " produced by FET3 is transferred directly to FTRl, and does not equilibrate with the bulk phase, as is illustrated in Fig. 7.13. This is almost certainly achieved by the classic metabolite-channeling mechanism, a common feature of multifunctional enzymes. [Pg.147]

An important family of multicopper enzymes couple the reduction of O2 to H2O with substrate oxidation. They include ascorbate oxidase, ceruloplasmin, Fet3, hephaestin, and laccase, and contain at least four copper ions. The four Cu ions are distributed between one type 1 blue copper site, one type 2 site, and one type 3 copper site. The blue Type 1 site is usually located some 12—13 A distant from a trinuclear site which has the two Type 3 coppers, linked by a bridging oxygen and one Type 2 copper. We illustrate this class of oxidases with laccase which catalyses the four-electron reduction of O2 to water, coupled with the oxidation of small organic... [Pg.287]


See other pages where Multicopper ceruloplasmin is mentioned: [Pg.136]    [Pg.238]    [Pg.252]    [Pg.330]    [Pg.313]    [Pg.314]    [Pg.321]    [Pg.122]    [Pg.127]    [Pg.461]    [Pg.131]    [Pg.221]    [Pg.234]    [Pg.276]    [Pg.282]    [Pg.304]    [Pg.311]    [Pg.313]    [Pg.320]    [Pg.322]    [Pg.325]    [Pg.990]    [Pg.991]    [Pg.1021]    [Pg.380]    [Pg.229]    [Pg.189]    [Pg.151]    [Pg.295]   
See also in sourсe #XX -- [ Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.68 , Pg.85 ]




SEARCH



Ceruloplasmin

© 2024 chempedia.info