Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiconfiguration self-consistent field response functions

Olsen J and J0rgensen P 1995 Time-dependent response theory with applications to self-consistent field and multiconfigurational self-consistent field wave functions Modern Electronic Structure Theory vo 2, ed D R Yarkony (Singapore World Scientific) pp 857-990... [Pg.2200]

J. Olsen and P. Jorgensen. Time-Dependent Response Theory with Applications to Self-Consistent Field and Multiconfigurational Self-Consistent Field Wave Functions, in Modern Electronic Structure Theory, edited by D. R. Yarkony, volume 2, chapter 13, pp. 857-990. World Scientific, Singapore, 1995. [Pg.146]

Calculation of rotational and vibrational g factors by linear response methods using multiconfigurational self-consistent-field wave functions is described in detail elsewhere [18,27]. [Pg.323]

P. Jprgensen, H. Jensen, J. Olsen, Linear response calculations for large scale multiconfiguration self-consistent field wave functions, J. Chem. Phys. 89 (1988) 3654-3661. [Pg.283]

R. Cammi and J. Tomasi, Nonequilibrium solvation theory for the polarizable continuum model - a new formulation at the SCF level with application to the case of the frequency-dependent linear electric-response function, Int. J. Quantum Chem., (1995) 465-74 B. Mennucci, R. Cammi and J. Tomasi, Excited states and solvatochromic shifts within a nonequilibrium solvation approach A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level, J. Chem. Phys., 109 (1998) 2798-807 R. Cammi, L. Frediani, B. Mennucci, J. Tomasi, K. Ruud and K. V. Mikkelsen, A second-order, quadratically... [Pg.386]

Also in response theory the summation over excited states is effectively replaced by solving a system of linear equations. Spin-orbit matrix elements are obtained from linear response functions, whereas quadratic response functions can most elegantly be utilized to compute spin-forbidden radiative transition probabilities. We refrain from going into details here, because an excellent review on this subject has been published by Agren et al.118 While these authors focus on response theory and its application in the framework of Cl and multiconfiguration self-consistent field (MCSCF) procedures, an analogous scheme using coupled-cluster electronic structure methods was presented lately by Christiansen et al.124... [Pg.166]

We start out with a section on the energy functionals and Hamiltonians that are relevant for molecular systems interacting with a structured environment. We continue with a section that briefly describes the correlated electron structure method, the multiconfigurational self-consistent field (MCSCF) electronic structure method. In the following section we cover the procedure for obtaining the correlated MCSCF response equations for the two different models describing molecules in structured environments. The final sections provide a brief overview of the results obtained using the two methods and a conclusion. [Pg.358]

Olsen, J., lorgcnsen, P. Time dependent response theory with appUcations in to self consistence field (SCF and multiconfigurational self consistent field (MCSCF) wave functions, l.F.A. PRINT, Aarhus Universitet, 1994... [Pg.249]

The present contribution concerns an outline of the response tlieory for the multiconfigurational self-consistent field electronic structure method coupled to molecular mechanics force fields and it gives an overview of the theoretical developments presented in the work by Poulsen et al. [7, 8, 9], The multiconfigurational self-consistent field molecular mechanics (MCSCF/MM) response method has been developed to include third order molecular properties [7, 8, 9], This contribution contains a section that describes the establisment of the energy functional for the situation where a multiconfigurational self-consistent field electronic structure method is coupled to a classical molecular mechanics field. The second section provides the necessary background for forming the fundamental equations within response theory. The third and fourth sections present the linear and quadratic, respectively, response equations for the MCSCF/MM response method. The fifth 283... [Pg.283]

At first sight these equations do not appear to be of any use since the simple response function is merely expressed in terms of a more complicated response function of the same kind involving [P, HqI However, it is possible to obtain a closed-form expression response function, as we shall see in the linear case. At the moment little is done to reformulate Eq. (51). Olsen and Jfirgensen (1985) have shown how the quadratic and the cubic response function can be evaluated using a multiconfigurational self-consistent field (MCSCF) reference state. [Pg.212]

AIMD = ab initio molecular dynamics B-LYP = Becke-Lee-Yang-Parr CCSD = coupled cluster single double excitations CVC = core-valence correlation ECP = effective core potential DF = density functional GDA = gradient corrected density approximation MCLR = multiconfigurational linear response MP2 = M0ller-Plesset second-order (MRD)CI = multi-reference double-excitation configuration interaction RPA = random phase approximation TD-MCSCF = time-dependent multiconfigurational self-consistent field TD-SCF = time-dependent self-consistent field. [Pg.29]


See other pages where Multiconfiguration self-consistent field response functions is mentioned: [Pg.202]    [Pg.112]    [Pg.335]    [Pg.185]    [Pg.187]    [Pg.470]    [Pg.296]    [Pg.108]    [Pg.336]    [Pg.82]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Multiconfiguration

Multiconfiguration self-consistent

Multiconfiguration self-consistent field

Multiconfigurational self-consistent

Multiconfigurational self-consistent field

Response field

Response functions

Responsive field

Self-Consistent Field

Self-consisting fields

Self-responsibility

© 2024 chempedia.info