Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Morpholine, reaction with

In the carbonylation reactions, further reaction of the acyl lithium compounds with carbon monoxide can occur, but clean reaction can be achieved if the lithium amide is first converted to a copper derivative (Scheme 130) (79JOC3734). In the case of morpholine, reaction with allyl bromide gave a 93% overall yield of the amide product. [Pg.259]

The reaction with morpholine is used to make a commercial vulcanizing agent. [Pg.138]

It was reported only recently that A-methyl transfer from an oxaziridine to an amine occurs with formation of an N—N bond (79JA6671). N—N bond forming reactions with A-unsubstituted oxaziridines had been found immediately after discovery of this class of compound (64CB2521) and have led to simple hydrazine syntheses (79AHC(24)63). Secondary amines like diethylamine or morpholine are A-aminated by (52) in the course of some minutes at room temperature with yields exceeding 90% (77JPR195). Further examples are the amination of aniline to phenylhydrazine, and of the Schiff base (96) to the diaziridine (97). [Pg.209]

The dimethyl acetal (94) is readily prepared from the 22-aldehyde (93) by direct reaction with methanol in the presence of hydrogen chloride. Ena-mines (95) are formed without a catalyst even with the poorly reactive piperidine and morpholine.Enol acetates (96) are prepared by refluxing with acetic anhydride-sodium acetate or by exchange with isopropenyl acetate in pyridine.Reaction with acetic anhydride catalyzed by boron trifluoride-etherate or perchloric acid gives the aldehyde diacetate. [Pg.401]

Although the enamine (30) underwent addition reaction with ethyl azido-dicarboxylate, it failed to add another mole of jS-nitrostyrene. In a similar manner the morpholine enamine of 2-methylcyclohexanone also failed to react with this olefin, i.e., jS-nitrostyrene, which is undoubtedly due to the 1,3-diaxial interaction between the methyl group and the incoming electrophile in the transition state. [Pg.18]

Other secondary amines such as pyrrolidine, di- -butylamine, tetrahydro-quinoline, n-benzylamine, and piperidine were also found to be capable of effecting this reduction. Interestingly, morpholine does not reduce enamines as readily (47) and its acid-catalyzed reaction with norbornanone was reported (45) to give only the corresponding enamine (93), although trace amounts of the reduction product were detected when cyclohexanone was treated with morpholine under these conditions (47a). The yield of morpholine reduction product was increased by using higher temperatures. [Pg.28]

Steroidal a,j8-unsaturated ketones such as /l -3-ketones undergo a facile reaction with pyrrolidine to give the corresponding, d - -dienamines (111) (40,53). The reaction is much slower with morpholine and piperidine, which is undoubtedly due to the generation of the double bond exocyclic to the six-membered hetero rings in the step involving the dehydration of the intermediate carbinolamine (112) to the corresponding iminium ion (113). [Pg.32]

The reaction of morpholine enamines of cyclic ketones with ethyl azodicarboxylate has also been demonstrated 56,136). The enamine (113) on reaction with ethyl azodicarboxylate can give the 2- or 2,6-bis(N,N di-carboxyhydrazino)cyclohexanones 199 and 200, respectively, on hydrolysis. [Pg.160]

H. Reaction with Formic and Trichloroacetic Acids Enamines derived from aldehydes have been treated with formic acid under the conditions of the Leuckart-Wallach reaction 141) to give saturated tertiary amines 142). The enamine (98) reacts vigorously with formic acid at room temperature to give N-isobutyl morpholine (204). [Pg.162]

Trichloroacetic acid behaves somewhat similarly in that protonation of the enamine occurs l7J7d). Subsequent decarboxylation of the trichloro-acetate gives trichloromethyl anion, which adds to the iminium cation to give the trichloromethyl amine derivative. Thus the enamine (113) undergoes reaction with trichloroacetic acid to give N-[l-(trichloromethyl)cyclo-hexyl]-morpholine (8). The latter compound undergoes rearrangement on... [Pg.163]

At higher temperatures the mixture of 10 and methyl vinyl ketone yields the 1,4-carbocyclic compound as described previously. Methyl isopropenyl ketone (5), ethyl acetylacrylate (d), 2-cyclohexenone (21), and 1-acetyl-1-cyclohexene (22) also undergo this type of cyclization reaction with enamines at higher temperatures. This cycloalkylation reaction occurs with enamines made of strongly basic amines such as pyrrolidine, but the less reactive morpholine enamine combines with methyl vinyl ketone to give only a simple alkylated product (7). Chlorovinyl ketones yield pyrans when allowed to react with the enamines of either alicyclic ketones or aldehydes (23). [Pg.216]

Cyanoallene, when treated with the morpholine enamine of cyclohexanone, undergoes a 1,3-cycloaddition reaction to form 72 (89). The reaction between cyanoallene and diendiamine 73a produces di-1,2-cycloaddition adduct 73 (i 9). The 4a-azonioanthracene ion (73b) readily undergoes a 1,4-cycloaddition reaction with nucleophilic dienophiles such as enamines (89a). The cycloaddition is stereoselective so that the a- and... [Pg.228]

Replacement of the ketone by an amide leads to Increased potency. Hydrolysis of nitrile, 133 (obtained by alkylation of diphenylacetonitrile with the morpholine analog of the chloro-amine used in the original preparation of methadone), affords acid, 134. Conversion to the acid chloride followed by reaction with pyrrolidine affords racemoramide (135) Separation of the (+) isomer by optical resolution gives dextromoramide, an analgesic an order of magnitude more potent than methadone. [Pg.82]

In much the same vein, the basic ester 7 can be obtained by reaction of the same chloroacid with morpholine derivative 6. Reaction with aniline 4 affords mornif1umate (8). [Pg.146]

The Michael reaction with enamines is exemplified in this procedure. In a second (spontaneous) step of the reaction, an aldol-type condensation occurs resulting in cyclization. Finally, the morpholine enamine of the product forms and is hydrolized by the addition of water to yield a mixture of octalones, which is separated by fractional crystallization. J -Octalone-2 can be reduced by lithium in anhydrous ammonia to the saturated tra/i5-2-decalone (Chapter 3, Section III). [Pg.82]

This is a typical nucleophilic acyl substitution reaction, with morpholine as the nucleophile and chloride as the leaving group. [Pg.1271]

For an improved procedure with amides, see Olah, G.S. Prakash, G.K.S. Arvanaghi, M. Synthesis, 1984, 228. See Martin, R. Romea, R Tey, C. Urpi, R Vilarrasa, J. Synlett, 1997, 1414 for reaction with an amide derived from morpholine and Grignard reagents, whch gives the ketone in good yield. See Kashima, C. Kita, I. Takahashi, K. Hosomi, A. J. Heterocyclic Chem., 1995, 32, 25 for a related reaction. [Pg.670]

The aziridine aldehyde 56 undergoes a facile Baylis-Hillman reaction with methyl or ethyl acrylate, acrylonitrile, methyl vinyl ketone, and vinyl sulfone [60]. The adducts 57 were obtained as mixtures of syn- and anfz-diastereomers. The synthetic utility of the Baylis-Hillman adducts was also investigated. With acetic anhydride in pyridine an SN2 -type substitution of the initially formed allylic acetate by an acetoxy group takes place to give product 58. Nucleophilic reactions of this product with, e. g., morpholine, thiol/Et3N, or sodium azide in DMSO resulted in an apparent displacement of the acetoxy group. Tentatively, this result may be explained by invoking the initial formation of an ionic intermediate 59, which is then followed by the reaction with the nucleophile as shown in Scheme 43. [Pg.117]

Amides, especially of piperidine and morpholine, give good yields of ketones on reaction with organocerium reagents.203 It has been suggested that the morpholine oxygen may interact with the oxyphilic cerium to stabilize the addition intermediate. [Pg.666]

Preparation of Reagent and Labelling Procedures. The structure of F-D [2-(2,4-diazobicyclo-2,2,2-octyl)-4-(5-aminofluoresceinyl)-6-morpholinyl 1,3,5-triazine] has been confirmed by its FAB-MS, IR, and H-NMR spectra (9). Briefly, F-D was synthesized by the treatment of fluorescamine isomer I with cyanuric chloride, then reaction with morpholine and DABCO (l,4-diazobicyclo-2,2,2-octane), as illustrated... [Pg.63]

Condensation of that intermediate with epichlorohydrin in the presence of a catalytic amount of piperidine affords the chlorohydrin 213, admixed with some epoxide. Reaction with tertiary butylamine completes construction of the propanolamine side chain. Displacement of the remaining halogen atom of 214 with morpholine under more strenuous conditions affords timolol (215). ... [Pg.272]

Recently, a further unique domino methodology has been reported by Lu and coworkers (Scheme 2.74) [173]. Herein, a triphenyl phosphine-catalyzed umpolung addition/cyclization of allenes and alkynes containing an electron-withdrawing group 2-316-2-318 followed by reaction with a double nucleophile 2-319 is assumed to account for the production of a broad palette of various heterocycles 2-321 and 2-323 via 2-320 and 2-322, respectively. Dihydrofurans, piperazines, morpholines and diazepanes were obtained during the process. [Pg.96]

To synthesize new surfactants, having incorporated both structural elements, the known siloxanyl modified halogenated esters and ethers of dicyclopentadiene [5] were treated with different amines according to the reaction scheme. Triethylamine yielded quaternary ammonium salts directly. Alternatively, after reaction with diethylamine or morpholine, the isolated siloxanyl-modified tertiary amines were also converted to quaternary species. To obtain anionic surfactants, the halogenated precursors were initially reacted with n-propylamine. In subsequent reaction steps the secondary amines formed were converted with maleic anhydride into amides, and the remaining acid functions neutralized. Course and rate of each single reaction strongly depended on the structure of the initial ester or ether compound and the amine applied. The basicity of the latter played a less important role [6]. [Pg.267]

An abnormal (tele) substitution of chlorine in both 2,3- and 2,6-dichloropyrazines 91, 92 occurred on reaction with dithiane anion, while morpholine gave the normal //wo-substitution <06TL31>. Another paper described the highly selective ipso monosubstitution of the 2,3-dichloro compound by enolates in toluene <06T9919>. [Pg.408]

A phenyl substituent at the y-carbon atom is a much weaker electron donor in comparison with the discussed above ethoxy and morpholin-4-yl groups. Nevertheless, l-(y-phenylallyl)benzotriazole 484 is still lithiated exclusively at the carbon a as it is evident from its reaction with aldehydes and ketones leading to dienes 486, resulting from... [Pg.59]

The ylide obtained from (methyl)triphenylphosphonium bromide reacts with morpholine derivatives 597 to give phosphonium salts 598 which upon treatment with -butyllithium are converted to new ylides 599. In a reaction with aldehydes, ylides 599 form iV-(l,3-disubstituted allyl)-morpholines 602 (Scheme 94) <1996AQ138>. Another less common nucleophile that can be used for substitution of the benzotriazolyl moiety in Af-(a-aminoalkyl)benzotriazoles is an adduct of iV-benzylthiazolium salt to an aldehyde which reacts with compounds 597 to produce adducts 600. Under the reaction conditions, refluxing in acetonitrile, salts 600 decompose to liberate aminoketones 601 <1996H(42)273>. [Pg.70]

The oxidative C-arylation of five- to eight-membered (NH)-heterocycles such as pyrrolidine, piperidine, morpholine, etc., is observed in the reaction with iodoarenes in the presence of a rhodium catalyst, RhCl(CO)[P(Fur)3]2.95... [Pg.231]


See other pages where Morpholine, reaction with is mentioned: [Pg.300]    [Pg.112]    [Pg.145]    [Pg.154]    [Pg.190]    [Pg.279]    [Pg.104]    [Pg.28]    [Pg.503]    [Pg.112]    [Pg.791]    [Pg.208]    [Pg.128]    [Pg.173]   


SEARCH



Morpholine

Morpholines

© 2024 chempedia.info