Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monoterpenes oxidation

Barr et al. (2003) performed an analysis of the impact of phytogenic aerosol (PhA) which is defined as forming mainly due to monoterpene oxidation (primarily, a- and /3-pinenes), on the radiative regime of the ABL over the forest in the eastern part of Canada. In the forest ecosystem the level of emissions to the atmosphere of biogenic hydrocarbons is moderate, with the concentration of a- and /3-pinenes constituting about 1.6 ppb. NMHC oxidation resulted in the formation of PhA at a number density of particles of about 5 108 cm 3. For a given concentration and size distribution of aerosol, its impact on the short-wave radiation transfer in the ABL was assessed. [Pg.50]

Monoterpene oxides are relatively reactive, unstable molecules in which an oxygen atom is situated between two carbons. In most cases the oxygen atom substitutes a carbon in the ring of a monoterpenoid—usually an alcohol. An example is bisabolol oxide from chamomile Matricaria chamomilla). However, in the two most significant oxides—1,8-dneole and ascaridole—found in essential oils, the oxygen atoms are attached outside the main hydrocarbon ring. [Pg.98]

The structure of the bicychc monoterpene borneol is shown in Figure 26 7 Isoborneol a stereoisomer of borneol can be prepared in the labora tory by a two step sequence In the first step borneol is oxidized to camphor by treatment with chromic acid In the second step camphor is reduced with sodium borohydride to a mixture of 85% isoborneol and 15% borneol On the basis of these transformations deduce structural formulas for isoborneol and camphor... [Pg.1090]

Experimental procedures have been described in which the desired reactions have been carried out either by whole microbial cells or by enzymes (1—3). These involve carbohydrates (qv) (4,5) steroids (qv), sterols, and bile acids (6—11) nonsteroid cycHc compounds (12) ahcycHc and alkane hydroxylations (13—16) alkaloids (7,17,18) various pharmaceuticals (qv) (19—21), including antibiotics (19—24) and miscellaneous natural products (25—27). Reviews of the microbial oxidation of aUphatic and aromatic hydrocarbons (qv) (28), monoterpenes (29,30), pesticides (qv) (31,32), lignin (qv) (33,34), flavors and fragrances (35), and other organic molecules (8,12,36,37) have been pubflshed (see Enzyp applications, industrial Enzyt s in organic synthesis Elavors AND spices). [Pg.309]

One method of synthesis of taxol analogues starts with a-pinene (8), the readily available and inexpensive monoterpene derived from the processing of turpentine from the pine tree (200). The a-pinene is oxidized to verbenone, which is then alkylated and converted to taxol analogues in a multistep process. [Pg.431]

Gas-phase products from the reactions of ozone with the monoterpenes (-)-p-pinene and (+)-sabinene included the ketones formed by oxidative fission of the exocyclic C=C bonds as well as ozonides from the addition of ozone to this bond (Griesbaum et al. 1998). [Pg.18]

The activity of the FePeCli6-S/tert-butyl hydroperoxide (TBHP) catalytic system was studied under mild reaction conditions for the synthesis of three a,p-unsaturated ketones 2-cyclohexen-l-one, carvone and veibenone by allylic oxidation of cyclohexene, hmonene, and a-pinene, respectively. Substrate conversions were higher than 80% and ketone yields decreased in the following order cyclohexen-1-one (47%), verbenone (22%), and carvone (12%). The large amount of oxidized sites of monoterpenes, especially limonene, may be the reason for the lower ketone yield obtained with this substrate. Additional tests snggested that molecular oxygen can act as co-oxidant and alcohol oxidation is an intermediate step in ketone formation. [Pg.435]

Figure 10.4 Temperature profiles for three classes of analytes monoterpenes (limonene) sesquiterpenes [(3 caryophyllene, caryophyllene oxide (caryo. oxide)] and diterpenes [cem brene A, isoincensole acetate (iso. acetate)]. PDMS fibre, sampling time 40 min. Reproduced from S. Hamm, E. Lesellier, J. Bleton, A. Tchapla, J. Chromatogr., A, 1018, 73 83. Copyright 2003 Elsevier Limited... Figure 10.4 Temperature profiles for three classes of analytes monoterpenes (limonene) sesquiterpenes [(3 caryophyllene, caryophyllene oxide (caryo. oxide)] and diterpenes [cem brene A, isoincensole acetate (iso. acetate)]. PDMS fibre, sampling time 40 min. Reproduced from S. Hamm, E. Lesellier, J. Bleton, A. Tchapla, J. Chromatogr., A, 1018, 73 83. Copyright 2003 Elsevier Limited...
Sampling time 60 min extraction temperature 80°C. Monoterpenes a-pinene, p-myrcene, a-phellandreneand limonene sesquiterpenes a-cubebene, a-copaene, p-elemene, p-caryophyllene, a-humulene, y-muurolene, p-eudesmene and caryophyllene oxide diterpenes cembrene A and isoincensole acetate. [Pg.273]

The first observation is the similarity between the chemical compositions of both the Boswellia carteri and Boswellia sacra. For these three olibanum samples, a-pinene (2), (3-myrcene (8) and limonene (14) are the predominant monoterpenes. p-Caryophyllene (73) is the major sesquiterpene besides a-copaene (65), a-humulene (also called a-caryophyllene) (78) and caryophyllene oxide (95). The characteristic olibanum compounds isoincensole and isoincensole acetate (128) together with cembrene A (120) are the main diterpenes. [Pg.275]

The chemical composition of B. papyrifera olibanum is markedly different from that of other Boswellia, with small amounts of monoterpenes and sesquiterpenes, large amounts of w-octanol (18) and -octy I acetate (40), with the latter being the major compound, and the presence of particular diterpenes [incensole (127), incen-sole acetate (129), incensole oxide (130) and incensole oxide acetate (131)] and the absence of both isoincensole and isoincensole acetate (128). Linear carboxylic acids from hexanoic acid (10) to lauric acid (93) were also identified in B. papyrifera olibanum exclusively. [Pg.275]

Treatment of the optically active gem-borazirconocene alkanes with deuterium oxide followed by alkaline oxidation affords the corresponding optically active 1-deuterio primary alcohols. The enantiomeric excess of the resulting primary alcohols represents the diaster-eoselectivity of the asymmetric hydrozirconation (Scheme 7.13). Based on the cost and availability of optically active ligands, three types were explored monoterpenes, 1,2-diols, and 1,2-amino alcohols. Hydrozirconation of optically pure 1-alkenyl boranes 39 provided optically active 1,1-bimetallics 40. [Pg.245]

Finally, we mention here recent progress made in the Bayer-Villiger oxidation. Zeolite Sn-Beta (1.6 wt.% Sn) was found to be an excellent catalyst [25], Thus, the monoterpene dihydrocarvone gives - with Sn-Beta and H202 - exclusively the lactone (Scheme 5.7), whereas m-chloroperbenzoic acid and Ti-Beta/H202 give the epoxide as the main product. [Pg.108]

Whereas some species oxidize host terpenes more randomly, producing an array of rather unspecific volatiles with little information, others use highly selective enzyme systems for the production of unique olfactory signals. However, apart from transformations of monoterpene hydrocarbons of host trees, oxygenated monoterpenes may well be biosynthesized de novo by the beetles (see below). [Pg.160]

Oxygenated monoterpenes which are found in almost every bark beetle species attacking coniferous trees, include czs-verbenol 246, frans-verbenol 247, and myrtenol 248, representing primary products of allylic oxidation of the host terpene a-pinene 45. Further oxidation of 247 or 248 leads to the... [Pg.160]

Oxidation and Halo-hydroxylation of Monoterpenes with Chloroperoxidase from Leptoxyphium fumago... [Pg.327]

Figure 11.2 Oxidation of the monoterpene alcohol geraniol to geranial by CPO in the presence of hydrogen peroxide and absence of halide ions. Figure 11.2 Oxidation of the monoterpene alcohol geraniol to geranial by CPO in the presence of hydrogen peroxide and absence of halide ions.
Kaup, B.A., Piantini, U., Wust, M. and Schrader, J., Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago. Appl. Microbiol. Biotechnol., 2007, 73, 1087-1096. [Pg.329]


See other pages where Monoterpenes oxidation is mentioned: [Pg.230]    [Pg.128]    [Pg.194]    [Pg.206]    [Pg.348]    [Pg.637]    [Pg.113]    [Pg.130]    [Pg.98]    [Pg.345]    [Pg.487]    [Pg.46]    [Pg.174]    [Pg.230]    [Pg.128]    [Pg.194]    [Pg.206]    [Pg.348]    [Pg.637]    [Pg.113]    [Pg.130]    [Pg.98]    [Pg.345]    [Pg.487]    [Pg.46]    [Pg.174]    [Pg.229]    [Pg.232]    [Pg.473]    [Pg.341]    [Pg.439]    [Pg.15]    [Pg.294]    [Pg.150]    [Pg.244]    [Pg.245]    [Pg.238]    [Pg.473]    [Pg.160]    [Pg.160]    [Pg.327]    [Pg.327]    [Pg.329]    [Pg.122]    [Pg.99]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Monoterpenals

Monoterpene

Monoterpenes

© 2024 chempedia.info