Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monosaccharide stability

Note 1. Many of the possible conformations are not likely to contribute significantly to the chemistry of a particular monosaccharide, but must be stabilized by formation of additional rings, as in anhydrides or other derivatives. Some others may occur as transition-state intermediates. [Pg.72]

Fig. 12. (continued)—(b) A r-axis projection of the unit cell shows that water molecules (crossed circles), 3 per monosaccharide, inside and between helices, are involved in the stability of the helices. [Pg.346]

The oldest way to produce caramel is by heating sucrose in an open pan, a process named caramelization. Food applications require improvement in caramel properties such as tinctorial power, stability, and compatibility with food. Caramels are produced in industry by controlled heating of a rich carbohydrate source in the presence of certain reactants. Carbohydrate sources must be rich in glucose because caramelization occurs only through the monosaccharide. Several carbohydrate sources can be used glucose, sucrose, com, wheat, and tapioca hydrolysates. The carbohydrate is added to a reaction vessel at 50°C and then heated to temperatures higher than 100°C. Different reactants such as acids, alkalis, salts, ammonium salts, and sulfites can be added, depending on the type of caramel to be obtained (Table 5.2.2). [Pg.336]

Summarizing the results of many investigations, monosaccharides and such derivatives as D-mannitol and D-glucitol are rather weak acceptors. Disaccharides, including such acceptor products as isomaltose, are much better acceptors, except for certain molecules, for instance leucrose, which is not an acceptor.29,46,47 The decrease of enzyme activity with time has been described in terms of a first-order reaction. The inactivation parameters have been calculated for the immobilized enzyme. The inactivation constants kd were 0.0135 (1/d) when maltose was the acceptor (stabilizing), and 0.029 (1/d) when fructose was the acceptor.38... [Pg.108]

Consequences of the conformational anomeric effect are largely expressed in monosaccharides and their derivatives. One recognizes the conformational endo-anomeric effect for pyranosides with a polar X group at C(l) (contrasteric electronic stabilization effect Fig. 7A) and conformational exo-anomeric effect for glycosides (acetals) in which the alkyl group of the exocyclic moiety is synclinal (Fig. 7B, C). [Pg.15]

The enzymatic synthesis of sucrose also throws light on the formation of the furanose form of fructose in the sucrose molecule. The fact that sucrose is directly formed from D-glucose-l-phosphate and D-fructose supports Isbell and Pigman s34 and Gottschalk s85 evidence that the latter monosaccharide occurs in solution in an equilibrium mixture of furanose and pyranose forms. This makes it unnecessary to postulate a special mechanism of stabilization of a five membered (furanose) ring before the formation of compound sugars containing the D-fructose molecule.86... [Pg.52]

Polysaccharides are ubiquitous in nature. They can be classified into three separate groups, based on their different functions. Structural polysaccharides provide mechanical stability to cells, organs, and organisms. Waterbinding polysaccharides are strongly hydrated and prevent cells and tissues from drying out. Finally, reserve polysaccharides serve as carbohydrate stores that release monosaccharides as required. Due to their polymeric nature, reserve carbohydrates are osmotically less active, and they can therefore be stored in large quantities within the cell. [Pg.40]

Here we report an overview of the different heterogeneously-catalyzed pathways designed for the selective conversion of carbohydrates. On the basis of these results, we shall try to determine the key parameters allowing a better control of the reaction selectivity. Water being commonly used as solvent in carbohydrate chemistry, we will also discuss the stability of solid catalysts in the aqueous phase. In this review, heterogeneously-catalyzed hydrolysis, dehydration, oxidation, esterification, and etherification of monosaccharides and polysaccharides are reported. [Pg.65]

The more stable boron chelates can be isolated even from aqueous solution, whereas those of lower stabilities are only accessible from non-aqueous media. Catechol- and inositol-borates (3, 5 and 6) possesses a well-defined monomeric structure,75 whereas those obtained from monosaccharides and alditols are polymeric.121 A crystal structure determination122 has been carried out for sodium scyUo-inositol diborate (6). [Pg.95]

The major mechanistic and structural aspect of the acetalation process is its orientation toward derivatives obtained either under thermodynamically controlled conditions or under kinetically controlled conditions. We will not discuss here all structural factors concerning the relative stabilities of acyclic and cyclic acetals of polyols and monosaccharides, because such a discussion has been extensively reviewed and adequately commented on [8,10,12 -14]. However, it is important to focus here on the main consequences of these relative stabilities in relation to the various experimental conditions to orientate the choice of specific conditions, particularly for the most important monosaccharides (D-glucose, D-mannose, and D-galactose). [Pg.13]


See other pages where Monosaccharide stability is mentioned: [Pg.298]    [Pg.110]    [Pg.164]    [Pg.346]    [Pg.350]    [Pg.369]    [Pg.398]    [Pg.17]    [Pg.171]    [Pg.49]    [Pg.305]    [Pg.318]    [Pg.320]    [Pg.42]    [Pg.21]    [Pg.159]    [Pg.231]    [Pg.121]    [Pg.117]    [Pg.332]    [Pg.348]    [Pg.167]    [Pg.173]    [Pg.258]    [Pg.32]    [Pg.148]    [Pg.34]    [Pg.94]    [Pg.123]    [Pg.219]    [Pg.362]    [Pg.14]    [Pg.357]    [Pg.107]    [Pg.44]    [Pg.110]    [Pg.215]    [Pg.219]    [Pg.136]    [Pg.11]    [Pg.994]   
See also in sourсe #XX -- [ Pg.263 , Pg.862 ]




SEARCH



Monosaccharides, enzyme stabilization

© 2024 chempedia.info