Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer activity measurement mixture

Surfactant Activity in Micellar Systems. The activities or concentrations of individual surfactant monomers in equilibrium with mixed micelles are the most important quantities predicted by micellar thermodynamic models. These variables often dictate practical performance of surfactant solutions. The monomer concentrations in mixed micellar systems have been measured by ultraf i Itration (I.), dialysis (2), a combination of conductivity and specific ion electrode measurements (3), a method using surface tension of mixtures at and above the CMC <4), gel filtration (5), conductivity (6), specific ion electrode measurements (7), NMR <8), chromatograph c separation of surfactants with a hydrophilic substrate (9> and by application of the Bibbs-Duhem equation to CMC data (iO). Surfactant specific electrodes have been used to measure anionic surfactant activities in single surfactant systems (11.12) and might be useful in mixed systems. ... [Pg.325]

As already discussed in Chapter 1, the relative tendency of a surfactant component to adsorb on a given surface or to form micelles can vary greatly with surfactant structure. The adsorption of each component could be measured below the CMC at various concentrations of each surfactant in a mixture. A matrix could be constructed to tabulate the (hopefully unique) monomer concentration of each component in the mixture corresponding to any combination of adsorption levels for the various components present. For example, for a binary system of surfactants A and B, when adsorption of A is 0.5 mmole/g and that of B is 0.3 mmole/g, there should be only one unique combination of monomer concentrations of surfactant A and of surfactant B which would result in this adsorption (e.g., 1 mM of A and 1.5 mM of B). Uell above the CMC, where most of the surfactant in solution is present as micelles, micellar composition is approximately equal to solution composition and is, therefore, known. If individual surfactant component adsorption is also measured here, it would allow computation of each surfactant monomer concentration (from the aforementioned matrix) in equilibrium with the mixed micelles. Other processes dependent on monomer concentration or surfactant component activities only could also be used in a similar fashion to determine monomer—micelle equilibrium. [Pg.326]

Tewari and Srivastava published the results on interaction between atactic polyCvinyl acetate) and poly(acrylonitrile), and poly(methyl methacrylate) and poly(methacrylic acid). On the basis of viscometric measurements of DMF solutions of mixtures of the pair of polymers mentioned above, the authors concluded that for all the systems examined complex formation occurs. This observation explains the results published earlier by the authors about template polymerization of acrylonitrile, methacrylic acid, and methyl methacrylate carried out in the presence of poly(vinyl acetate). It was found that polymerization of acrylonitrile in DMF in the presence of atactic poly(vinyl acetate) (mol. weight 47,900) takes place much faster than without poly(vinyl acetate), especially, when concentration of the monomer is equimolar to the concentration of template repeat units. The overall energy of activation was found to be 55.76 kJ/mol for template polymerization and 77.01 kJ/mol for polymerization in the absence of the template. [Pg.47]

A study of benzocyclobutene polymerization kinetics and thermodynamics by differential scanning calorimetry (DSC) methods has also been reported in the literature [1]. This study examined a series of benzocyclobutene monomers containing one or two benzocyclobutene groups per molecule, both with and without reactive unsaturation. The study provided a measurement of the thermodynamics of the reaction between two benzocyclobutene groups and compared it with the thermodynamics of the reaction of a benzocyclobutene with a reactive double bond (Diels-Alder reaction). Differential scanning calorimetry was chosen for this work since it allowed for the study of the reaction mixture throughout its entire polymerization and not just prior to or after its gel point. The monomers used in this study are shown in Table 3. The polymerization exotherms were analyzed by the method of Borchardt and Daniels to obtain the reaction order n, the Arrhenius activation energy Ea and the pre-exponential factor log Z. Tables 4 and 5 show the results of these measurements and related calculations. [Pg.11]

Oxidation of Mixtures of Monomers. The method most likely to yield random copolymers of DMP and DPP is the simultaneous oxidation of a mixture of the two phenols, although this procedure may present problems because of the great difference in reactivity of the two phenols. The production of high molecular weight homopolymer from DPP is reported to require both a very active catalyst, such as tetramethylbutane-diamine-cuprous bromide, and high temperature, conditions which favor carbon-carbon coupling and diphenoquinone formation (Reaction 2) from DMP (II). With the less active pyridine-cuprous chloride catalyst at 25 °C the rate of reaction of DMP, as measured by the rate of oxygen... [Pg.446]

The optical activities of the chiral oligopropylenes were determined at various wavelengths. Polarimetric measurements were only made for product mixtures from oligomerizations performed with various monomer concentrations and at various reaction temperatures and also for individual fractions of dimers, trimers, and tetramers. The product mixtures were fractionated by distillation over a split tube column (Table XIII). [Pg.134]

Cationic polymerization of 2-methylpropene at temperatures about 170 K may be almost flash-like the transformation of tetrahydrofuran to an equilibrium polymer-monomer mixture may last tens to hundreds of hours at 260 K. Evidently the overall polymerization rate is a function of many factors which may be interconnected or may act separately. The aim of kinetic measurements is to describe the polymerization, and to find conditions under which it would proceed in the desired manner. This is usually only possible after the various factors and their consequences have been isolated and investigated. The rate of monomer consumption during polymerization mostly depends on the generation rate of active centres, and on their concentration and reactivity. [Pg.481]

The use of stop-flow techniques to observe the formation of carbenium ions in actual polymerising systems was introduced by Pepper et al. about ten years ago and is presently exploited by various research groups with increasingly fast equipment. These experiments consist essentially in mixing monomer and catalyst solutions in an appropriate flowing system coupled vrith a rapid detection apparatus which takes absorption spectra and can measure other physical parameters, such as the electrical conductivity of the reaction mixture. This technique is certainly the most appropriate for studying the rise and fate of ionic active species in cationic polymerisation and the few, but remarkable, results obtained so far will be reviewed in the various sections dealing vrith specific systems. [Pg.25]


See other pages where Monomer activity measurement mixture is mentioned: [Pg.155]    [Pg.33]    [Pg.518]    [Pg.324]    [Pg.120]    [Pg.33]    [Pg.97]    [Pg.33]    [Pg.278]    [Pg.165]    [Pg.518]    [Pg.245]    [Pg.203]    [Pg.377]    [Pg.278]    [Pg.7]    [Pg.185]    [Pg.27]    [Pg.65]    [Pg.436]    [Pg.128]    [Pg.185]    [Pg.204]    [Pg.49]    [Pg.104]    [Pg.298]    [Pg.76]    [Pg.625]    [Pg.329]    [Pg.226]    [Pg.119]    [Pg.481]    [Pg.270]    [Pg.280]    [Pg.104]    [Pg.347]    [Pg.230]    [Pg.62]    [Pg.265]    [Pg.114]    [Pg.236]    [Pg.255]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Activated monomer

Activity measure

Activity measurements

Mixture, monomers

Monomer activity

Monomer activity measurement

© 2024 chempedia.info