Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monoliths polystyrene

Gusev et al. monitored the conductivity of his modified monolithic polystyrene-based columns for over 3 months and observed no changes [49]. Similarly, the electroosmotic mobility was measured over a number of days and again almost no changes were found [50]. This demonstrates excellent stability of the polystyrene-based monolithic column. [Pg.223]

Hochleitner, E.O. et al. Analysis of isolectins on non-porous particles and monolithic polystyrene divinylbenzene-based stationary phases and electrospray ionization mass spectrometry. Int. J. Mass Spectmm. 2003, 223-224,519-526. [Pg.77]

The second concept for the generation of monolithic polymers is based on diblock copolymers which were prepared by Hillmyer and coworkers [27]. These copolymers contain oriented nanoscopic cylinders of the degradable polymer polylactide (PLA) which were embedded in polystyrene. The latter served as an inert thermoplastic matrix, while PLA could be selectively removed under well-defined conditions using sodium hydroxide in aqueous methanol. The resulting mesoporous monolithic polystyrene contains nanochannels with defined pore size. The major drawback of this material free of any cross-linker is associated with reduced mechanical and chemical stability. [Pg.219]

FIGURE 7.1 Scanning electron micrographs of a polystyrene-divinylbenzene monolithic column prepared in a 20-pm fused silica capillary tube (reproduced from the reference, Ivanov et al. (2003), with permission from American Chemical Society). [Pg.149]

Ivanov, A.R., Zang, L., Karger, B. L. (2003). Low-attomole electrospray ionization MS and MS/ MS analysis of protein tryptic digests using 20 pm-i.d. polystyrene-divinylbenzene monolithic capillary columns. Anal. Chem. 75, 5306-5316. [Pg.173]

This publication established that crosslinking of the polystyrene was not necessary to support the pore structure in monolith nanoporous samples, that mild chemical degradation of an aliphatic polyester is a practical methodology for the generation of bulk porous samples, and that the hydroxyl group derived from the juncture of the PS-PLA material decorated the pore walls of the material. [Pg.179]

Recent chromatographic data indicate that the interactions between the hydrophobic surface of a molded poly(styrene-co-divinylbenzene) monolith and solutes such as alkylbenzenes do not differ from those observed with beads under similar chromatographic conditions [67]. The average retention increase, which reflects the contribution of one methylene group to the overall retention of a particular solute, has a value of 1.42. This value is close to that published in the literature for typical polystyrene-based beads [115]. However, the efficiency of the monolithic polymer column is only about 13,000 plates/m for the isocratic separation of three alkylbenzenes. This value is much lower than the efficiencies of typical columns packed with small beads. [Pg.108]

Fig. 14 a, b. Effect of gradient steepness on the very fast separation of polystyrene standards in a molded monolithic poly(styrene-co-divinylbenzene) column (Reprinted with permission from [121]. Copyright 1996 Elsevier). Conditions column, 50 mm x8 mm i.d., mobile phase, linear gradient from 100% methanol to 100% tetrahydrofuran within a 1 min b 12 s, flow rate, 20 ml/min, peaks represent polystyrene standards with molecular weights of 9200,34,000 and 980,000 (order of elution), 3 mg/ml of each standard in tetrahydrofuran, injection volume 20 pi, UV detection, 254 nm... [Pg.112]

Three main types of polymer-based monoliths are polymethacrylate-based monoliths where methacrylate forms the major component of the monomers for polymerization, polyacrylamide-based monoliths where cross-linked polyacrylamide is synthesized directly within the capillary, and polystyrene-based monoliths that are usually prepared from styrene and 4-(chloromethyl) styrene as monomers and divinylbenzene (DVB) as the cross-linker. [Pg.458]

Monoliths Silica and lipophilic modified silica Polyacrylamide, polystyrene, and polymethacrylate-based phases... [Pg.459]

FA in ACN (B) nano-LC (Cl8 silica particle UV or MS with polystyrene-based monolith outlet frit),... [Pg.13]

Huang, X. A., Zhang, S., Schultz, G. A., and Henion, J., Surface-alkylated polystyrene monolithic columns for peptide analysis in capillary liquid chromatography-electrospray ionization mass spectrometry. Analytical Chemistry 74(10), 2336-2344, 2002. [Pg.94]

Hoveyda and co-workers immobilized an olefin metathesis catalyst on monolithic sol-gel and claimed that the catalytic material is easily recyclable. Barrett and co-workersprepared a recyclable boomerang polymer supported catalyst for olefin methathesis by grafting the preformed catalyst to a polystyrene... [Pg.364]

By far the most studied PolyHIPE system is the styrene/divinylbenzene (DVB) material. This was the main subject of Barby and Haq s patent to Unilever in 1982 [128], HIPEs of an aqueous phase in a mixture of styrene, DVB and nonionic surfactant were prepared. Both water-soluble (e.g. potassium persulphate) and oil-soluble (2,2 -azo-bis-isobutyronitrile, AIBN) initiators were employed, and polymerisation was carried out by heating the emulsion in a sealed plastic container, typically for 24 hours at 50°C. This yielded a solid, crosslinked, monolithic polymer material, with the aqueous dispersed phase retained inside the porous microstructure. On exhaustive extraction of the material in a Soxhlet with a lower alcohol, followed by drying in vacuo, a low-density polystyrene foam was produced, with a permanent, macroporous, open-cellular structure of very high porosity (Fig. 11). [Pg.190]

The idea of the preparation of porous polymers from high internal phase emulsions had been reported prior to the publication of the PolyHIPE patent [128]. About twenty years previously, Bartl and von Bonin [148,149] described the polymerisation of water-insoluble vinyl monomers, such as styrene and methyl methacrylate, in w/o HIPEs, stabilised by styrene-ethyleneoxide graft copolymers. In this way, HIPEs of approximately 85% internal phase volume could be prepared. On polymerisation, solid, closed-cell monolithic polymers were obtained. Similarly, Riess and coworkers [150] had described the preparation of closed-cell porous polystyrene from HIPEs of water in styrene, stabilised by poly(styrene-ethyleneoxide) block copolymer surfactants, with internal phase volumes of up to 80%. [Pg.201]

To increase the surface area of the stationary phase for CEC separation, a collocated monolithic support structure (COMOSS) was constructed in a Si chip. A polystyrene-sulfonic acid stationary phase was then immobilized [349]. Design of the COMOSS required that the combined cross sectional area at the column head to be the same at any point in the inlet distributor [644]. A study for the reduction of band broadening in COMOSS was also reported [645]. [Pg.164]


See other pages where Monoliths polystyrene is mentioned: [Pg.706]    [Pg.706]    [Pg.9]    [Pg.347]    [Pg.178]    [Pg.179]    [Pg.180]    [Pg.180]    [Pg.187]    [Pg.34]    [Pg.111]    [Pg.111]    [Pg.112]    [Pg.113]    [Pg.36]    [Pg.545]    [Pg.581]    [Pg.584]    [Pg.70]    [Pg.30]    [Pg.58]    [Pg.540]    [Pg.147]    [Pg.166]    [Pg.167]    [Pg.168]    [Pg.168]    [Pg.175]    [Pg.196]    [Pg.220]    [Pg.236]   
See also in sourсe #XX -- [ Pg.168 ]

See also in sourсe #XX -- [ Pg.168 ]

See also in sourсe #XX -- [ Pg.168 ]




SEARCH



Polystyrene-based monoliths

Polystyrene-based monoliths, preparation

© 2024 chempedia.info