Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdates reduction

Conditions favorable for Co(ll) reduction seem to be also beneficial to the reduction of Mo(Vl) to Mo(0). One may assume that the contact with metallic cobalt phase is required for full molybdate reduction. [Pg.234]

Molybdenum is also recovered as a by-product of copper and tungsten mining operations. The metal is prepared from the powder made by the hydrogen reduction of purified molybdic trioxide or ammonium molybdate. [Pg.78]

The reduction of molybdate salts in acidic solutions leads to the formation of the molybdenum blues (9). Reductants include dithionite, staimous ion, hydrazine, and ascorbate. The molybdenum blues are mixed-valence compounds where the blue color presumably arises from the intervalence Mo(V) — Mo(VI) electronic transition. These can be viewed as intermediate members of the class of mixed oxy hydroxides the end members of which are Mo(VI)02 and Mo(V)0(OH)2 [27845-91-6]. MoO and Mo(VI) solutions have been used as effective detectors of reductants because formation of the blue color can be monitored spectrophotometrically. The nonprotonic oxides of average oxidation state between V and VI are the molybdenum bronzes, known for their metallic luster and used in the formulation of bronze paints (see Paint). [Pg.470]

The dinuclear ion Mo2(S2) g (F - prepared from the reaction of molybdate and polysulfide solution (13) is a usehil starting material for the preparation of dinuclear sulfur complexes. These disulfide ligands are reactive toward replacement or reduction to give complexes containing the Mo2S " 4 core (Fig. 3f). [Pg.471]

Soil Nutrient. Molybdenum has been widely used to increase crop productivity in many soils woddwide (see Fertilizers). It is the heaviest element needed for plant productivity and stimulates both nitrogen fixation and nitrate reduction (51,52). The effects are particularly significant in leguminous crops, where symbiotic bacteria responsible for nitrogen fixation provide the principal nitrogen input to the plant. Molybdenum deficiency is usually more prominent in acidic soils, where Mo(VI) is less soluble and more easily reduced to insoluble, and hence unavailable, forms. Above pH 7, the soluble anionic, and hence available, molybdate ion is the principal species. [Pg.478]

Reduction of sulfur dioxide by methane is the basis of an Allied process for converting by-product sulfur dioxide to sulfur (232). The reaction is carried out in the gas phase over a catalyst. Reduction of sulfur dioxide to sulfur by carbon in the form of coal has been developed as the Resox process (233). The reduction, which is conducted at 550—800°C, appears to be promoted by the simultaneous reaction of the coal with steam. The reduction of sulfur dioxide by carbon monoxide tends to give carbonyl sulfide [463-58-1] rather than sulfur over cobalt molybdate, but special catalysts, eg, lanthanum titanate, have the abiUty to direct the reaction toward producing sulfur (234). [Pg.144]

Phosphorus and Silicon in Waters, Effluents and Sludges [e.g. Phosphorus in Waters, Effluents and Sludges by Spectrophotometry-phosphomolybdenum blue method. Phosphorus in Waters and Acidic Digests by Spectrophotometry-phosphovanadomolybdate method. Ion Chromatographic Methods for the Determination of Phosphorus Compound, Pretreatment Methods for Phosphorus Determinations, Determination of silicon by Spectrophotometric Determination of Molybdate Reactive Silicon-1 -amino-2-naphthol-4, sulphonic acid (ANSA) or Metol reduction methods or ascorbic acid reduction method. Pretreatment Methods to Convert Other Eorms of Silicon to Soluble Molybdate Reactive Silicon, Determination of Phosphorus and Silicon Emission Spectrophotometry], 1992... [Pg.315]

Mild and reversible reduction of 1 12 and 2 18 heteropoly-molybdates and -tungstates produces characteristic and very intense blue colours ( heteropoly blues ) which find application in the quantitative determinations of Si, Ge, P and As, and commercially as dyes and pigments. The reductions are most commonly of 2 electron equivalents but may be of 1 and up to 6 electron equivalents. Many of the reduced anions can be isolated as solid salts in which the unreduced structure remains essentially unchanged and... [Pg.1016]

Discussion. Molybdates [Mo(VI)] are quantitatively reduced in 2M hydrochloric acid solution at 60-80 °C by the silver reductor to Mo(V). The reduced molybdenum solution is sufficiently stable over short periods of time in air to be titrated with standard cerium(IV) sulphate solution using ferroin or /V-phenylanthranilic acid as indicator. Nitric acid must be completely absent the presence of a little phosphoric(V) acid during the reduction of the molybdenum(VI) is not harmful and, indeed, appears to increase the rapidity of the subsequent oxidation with cerium(IV) sulphate. Elements such as iron, copper, and vanadium interfere nitrate interferes, since its reduction is catalysed by the presence of molybdates. [Pg.383]

A. Molybdenum blue method Discussion. Orthophosphate and molybdate ions condense in acidic solution to give molybdophosphoric acid (phosphomolybdic acid), which upon selective reduction (say, with hydrazinium sulphate) produces a blue colour, due to molybdenum blue of uncertain composition. The intensity of the blue colour is proportional to the amount of phosphate initially incorporated in the heteropoly acid. If the acidity at the time of reduction is 0.5M in sulphuric acid and hydrazinium sulphate is the reductant, the resulting blue complex exhibits maximum absorption at 820-830 nm. [Pg.702]

Where water softening is provided and there is no reduction in system water TDS, treatments are primarily based on inorganic corrosion inhibitor blends (nitrite, molybdate, etc.). Under these circumstances, there is no benefit in using an expensive organic oxygen scavenger to keep the TDS level low, and a common chemical such as catalyzed sodium sulfite may be used. [Pg.186]

Ammonium ions, tetradecyldimethylbenzyl-liquid—Liquid extraction, 1, 548 Ammonium molybdate, 3,1257 Ammonium nitrate, hydroxyl-as plutonium(IV) reductant Purex process, 6, 949 Amphotericin B metal complexes, 2, 973 a-Amylase zinc, 6, 607 Anabaena spp. [Pg.84]

On account of the fact that the electrode potential of molybdenum is more negative than the discharge potential of hydrogen, principle difficulties arise to cathodically electrodeposit molybdenum chalcogenide films from aqueous solutions. Theoretically, the deposition of pure molybdenum by electrolytic reduction of molybdates in acidic aqueous solutions is possible according to the reaction... [Pg.110]

Attempts to electrodeposit M0S2 in a way similar to that used for MoSe2 - in this case from solutions of molybdate and thiosulfate under various conditions of pH and temperature - have been unsuccessful. Instead, thin films of M0S2 were convenienfly deposited from tetrathiomolybdate solutions Ponomarev et al. [149] observed that reduction of MoO in slightly alkaline solutions results in the formation of an X-ray amorphous film which by annealing at 550 in Ar for 1 h... [Pg.110]

These and similar results can be explained if the simultaneous reduction of hydrogen peroxide is due to an induced reaction. To show the characteristic features of this reaction some results are presented in Table 19 and Table 20. The procedure for these measurements was as follows. The solution of peroxy compounds given in columns 1 and 2 was made up to 20 ml and the pH was adjusted to the given value. Then potassium thiocyanate solution was added and, after the reaction time noted, the process was quenched by adding potassium iodide solution (0.3 g KI). After 5 sec the solution was acidified with 1 ml 2 iV sulphuric acid then using, molybdate catalyst solution, the iodine liberated was titrated with standard thiosulphate. [Pg.569]

There is evidence for the anaerobic degradation of alkanes to COj, plausibly under conditions of sulfate reduction. In experiments with sediment slurries from contaminated marine areas, was recovered from " C-hexadecane (Coates et al. 1997), and was inhibited by molybdate that is consistent with the involvement of sulfate reduction. Under sulfate-reducing conditions was produced from C[14,15]octacosane (CagHjg) (Caldwell et al. 1998). Different mechanisms have been elucidated for the anaerobic degradation of higher alkanes, and both occurred simultaneously in a sulfate-reducing consortium (Callaghan et al. 2006) ... [Pg.304]

The pyNP2 ligand was used for the synthesis of a molybde-num(0) dinitrogen complex (Scheme 11) (45). First the ligand was coordinated to a Mo(III) halide precursor to form [MoX3 (pyNP2)(thf)] (X Cl, Br ). Reduction of the Mo(III) complex... [Pg.399]

This analytical procedure is based on an optimum analysis condition for segmented continuous flow analysis. The sample is combined with a molybdate solution at a pH between 1.4 and 1.8 to form the //-molybdosilicic acid. After an appropriate time for reaction, a solution of oxalic acid is added, which transforms the excess molybdate to a non-reducible form. The oxalic acid also suppresses the interference from phosphate by decomposing phosphomolyb-dic acid. Finally, a reductant is added to form molybdenum blue. Both ascorbic acid and stannous chloride were tested as reductants. [Pg.103]

It has also been reported that D-galactose can be isomerized with molybdic acid to a mixture containing D-talose and D-gulose, but the yields are low.34-35 A number of derivatives of gulono-1,4-lactone have been prepared that, by reduction, would provide selectively protected derivatives of gulose. These derivatives will be discussed in subsequent Sections of this article. [Pg.295]

Olsen et al. [62] have described a method for the determination of pH8.5 sodium bicarbonate extractable phosphorus in soils. The concentration of the blue complex produced by the reduction, with ascorbic acid, of the phosphomolybdate formed when acid ammonium molybdate reacts with phosphate is measured spectrophotometrically at 880 nm [63]. [Pg.333]

The determination of the orthophosphate was carried out by using the automated systems described by the Technicon Instruments Corporation. The manifolds used are shown in Fig. 12.3. The procedures referred to below as methods I and II are Technicon industrial methods Nos. 94-70W and 155-71W, respectively. Method I includes ascorbic acid alone for the reduction of the molybdophosphoric acid whereas in method II the mixed reagents ascorbic acid, sulphuric acid, ammonium molybdate and antimony potassium tartrate are used. Method I is intended for use for high levels of phosphorus (up to lOpg ml4) and method II for low levels (less than 0.5pg ml4). The wetting agent (Levor IV) used in order to obtain a smooth bubble pattern, is present in the ascorbic acid reagent line for method I whereas it is added externally Fig. 12.3) in the water line (0.5pg ml4 of Levor) in method II. [Pg.334]


See other pages where Molybdates reduction is mentioned: [Pg.395]    [Pg.92]    [Pg.200]    [Pg.380]    [Pg.23]    [Pg.1004]    [Pg.1008]    [Pg.825]    [Pg.275]    [Pg.165]    [Pg.34]    [Pg.40]    [Pg.266]    [Pg.560]    [Pg.567]    [Pg.32]    [Pg.178]    [Pg.256]    [Pg.331]    [Pg.50]    [Pg.65]    [Pg.1561]    [Pg.1562]    [Pg.80]    [Pg.2]    [Pg.276]    [Pg.295]   
See also in sourсe #XX -- [ Pg.1238 ]

See also in sourсe #XX -- [ Pg.137 ]

See also in sourсe #XX -- [ Pg.3 , Pg.1238 ]




SEARCH



Bismuth molybdate catalyst reduction

Reduction molybdate-catalyzed

© 2024 chempedia.info