Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molten salts reactions

Molten sodium tetrachloroaluminate (a 1 1 mixture of NaCl and AICI3) is a good reaction medium for the Friedel-Crafts acylation reaction given in fig. 3.3 (Wade et al., 1979). Whereas the classical procedure for the synthesis of 1-indane from 3-phenylpropanoic acid consists of three reaction steps with a total reaction time of ca. six hours (Gattermann et al., 1982), the molten salt reaction is finished in five minutes and gives an even better yield (Wade et al., 1979). [Pg.88]

Whereas the classical procedure for the synthesis of 1-indanone from 3-phenylpropanoic acid consists of three reaction steps with a total reaction time of ca. six hours [116], the molten salt reaction is finished in five minutes and gives an even better yield [115]. [Pg.61]

As an alternative, the use of water in the synthesis process can be eliminated to avoid the production of liquid waste as reaction by-product. However, the complete conversion of fly ash to zeolites has not been possible due to insufficient contact of Na", in the molten stage, with the surface of fly ash particles. In addition, the yield of this molten salts reaction process has been low and this combined with the generation of irregular product morphology has led to the processes which have not been explored much. [Pg.47]

At high temperatures and under conditions of intimate contact in the homogeneous solution phase, or for heterogeneous systems in which the reactants are suspended in a molten salt, reactions usually proceed extremely rapidly. [Pg.70]

Figure 13.5 shows a flowsheet for the manufacture of phthalic anhydride by the oxidation of o-xylene. Air and o-xylene are heated and mixed in a Venturi, where the o-xylene vaporizes. The reaction mixture enters a tubular catalytic reactor. The heat of reaction is removed from the reactor by recirculation of molten salt. The temperature control in the reactor would be diflficult to maintain by methods other than molten salt. [Pg.332]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

Lithium Chloride. Lithium chloride [7447- 1-8], LiCl, is produced from the reaction of Hthium carbonate or hydroxide with hydrochloric acid. The salt melts at 608°C and bods at 1382°C. The 41-mol % LiCl—59-mol % KCl eutectic (melting point, 352°C) is employed as the electrolyte in the molten salt electrolysis production of Hthium metal. It is also used, often with other alkaH haHdes, in brazing flux eutectics and other molten salt appHcations such as electrolytes for high temperature Hthium batteries. [Pg.225]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

Aluminum. All primary aluminum as of 1995 is produced by molten salt electrolysis, which requires a feed of high purity alumina to the reduction cell. The Bayer process is a chemical purification of the bauxite ore by selective leaching of aluminum according to equation 35. Other oxide constituents of the ore, namely siUca, iron oxide, and titanium oxide remain in the residue, known as red mud. No solution purification is required and pure aluminum hydroxide is obtained by precipitation after reversing reaction 35 through a change in temperature or hydroxide concentration the precipitate is calcined to yield pure alumina. [Pg.172]

In the Godrej-Lurgi process, olefins are produced by dehydration of fatty alcohols on alumina in a continuous vapor-phase process. The reaction is carried out in a specially designed isothermal multitube reactor at a temperature of approximately 300°C and a pressure of 5—10 kPa (0.05—0.10 atm). As the reaction is endothermic, temperature is maintained by circulating externally heated molten salt solution around the reactor tubes. The reaction is sensitive to temperature fluctuations and gradients, hence the need to maintain an isothermal reaction regime. [Pg.440]

Some reactors are designed specifically to withstand an explosion (14). The multitube fixed-bed reactors typically have ca 2.5-cm inside-diameter tubes, and heat from the highly exothermic oxidation reaction is removed by a circulating molten salt. This salt is a eutectic mixture of sodium and potassium nitrate and nitrite. Care must be taken in reactor design and operation because fires can result if the salt comes in contact with organic materials at the reactor operating temperature (15). Reactors containing over 20,000 tubes with a 45,000-ton annual production capacity have been constmcted. [Pg.483]

Other techniques include oxidative, steam atmosphere (33), and molten salt (34) pyrolyses. In a partial-air atmosphere, mbber pyrolysis is an exothermic reaction. The reaction rate and ratio of pyrolytic filler to ok products are controlled by the oxygen flow rate. Pyrolysis in a steam atmosphere gives a cleaner char with a greater surface area than char pyroly2ed in an inert atmosphere however, the physical properties of the cured compounded mbber are inferior. Because of the greater surface area, this pyrolytic filler could be used as activated carbon, but production costs are prohibitive. Molten salt baths produce pyroly2ed char and ok products from tine chips. The product characteristics and quantities depend on the salt used. Recovery of char from the molten salt is difficult. [Pg.15]

The reaction temperature of 500—600°C is much lower than that required for the reductive chlorination. The volatile chlorides evolve from the molten salt bath. The boiling points of NbCl, TaCl, and WOCl He between 228 and 248°C. These compounds must therefore be separated by means of a distillation column. The chlorination of ferroalloys produces very pure tantalum pentachloride in toimage quantities. The TaCl contains less than 5 )J.g Nb/g Ta, and other metallic impurities are only amount to 1—2 lg/g Ta. [Pg.327]

Alternatively, the TiCl may be reduced using hydrogen, sodium, or magnesium. It follows that TiCl2 is the first stage in the KroU process for the production of titanium metal from titanium tetrachloride. A process for recovery of scrap titanium involving the reaction of scrap metal with titanium tetrachloride at >800° C to form titanium dichloride, collected in a molten salt system, and followed by reaction of the dichloride with magnesium to produce pure titanium metal, has been patented (122,123). [Pg.129]

Titanium Silicides. The titanium—silicon system includes Ti Si, Ti Si, TiSi, and TiSi (154). Physical properties are summarized in Table 18. Direct synthesis by heating the elements in vacuo or in a protective atmosphere is possible. In the latter case, it is convenient to use titanium hydride instead of titanium metal. Other preparative methods include high temperature electrolysis of molten salt baths containing titanium dioxide and alkalifluorosiUcate (155) reaction of TiCl, SiCl, and H2 at ca 1150°C, using appropriate reactant quantities for both TiSi and TiSi2 (156) and, for Ti Si, reaction between titanium dioxide and calcium siUcide at ca 1200°C, followed by dissolution of excess lime and calcium siUcate in acetic acid. [Pg.132]

A reactor was cooled by a molten salt. At startup the salt was heated to reaction temperature by an electric heater. During one startup the temperature of the salt rose at only half the usual rate. Obviously one of the heaters was faulty, but no fault could be found. The problem was finally traced to a nitrogen valve, which had been left open. The flow of nitrogen through the reactor was taking away half the heat. [Pg.350]

The field of reaction chemistry in ionic liquids was initially confined to the use of chloroaluminate(III) ionic liquids. With the development of neutral ionic liquids in the mid-1990s, the range of reactions that can be performed has expanded rapidly. In this chapter, reactions in both chloroaluminate(III) ionic liquids and in similar Lewis acidic media are described. In addition, stoichiometric reactions, mostly in neutral ionic liquids, are discussed. Review articles by several authors are available, including Welton [1] (reaction chemistry in ionic liquids), Holbrey [2] (properties and phase behavior), Earle [3] (reaction chemistry in ionic liquids), Pagni [4] (reaction chemistry in molten salts), Rooney [5] (physical properties of ionic liquids), Seddon [6, 7] (chloroaluminate(III) ionic liquids and industrial applications), Wasserscheid [8] (catalysis in ionic liquids), Dupont [9] (catalysis in ionic liquids) and Sheldon [10] (catalysis in ionic liquids). [Pg.174]

Stoichiometric - or, more simply, non-catalytic - reactions are an important and rapidly expanding area of research in ionic liquids. This section deals with reactions that consume the ionic liquid (or molten salt) or use the ionic liquid as a solvent. [Pg.175]

One of the first reactions to be carried out in a molten salt (albeit at 270 °C) was the Scholl reaction. This involves the inter- or intramolecular coupling of two aromatic rings. A example of this reaction, in which 1-phenylpyrene was cyclized to indeno[l,2,3-cd]pyrene [26] is given in Scheme 5.1-7. A more elaborate version of the Scholl reaction is shown in Scheme 5.1-8 and involves bicyclization of an aromatic cumulene [27]. [Pg.178]

Buchanan and co-workers studied the behavior of various aromatic compounds in antimony(III) molten salts [30]. These salts can act both as mild Lewis acids and allow redox reactions to take place. The Lewis acidity of the melt can be tuned by controlling the concentration of [SbCl2]. Basic melts are formed by addition of a few mol % of a chloride donor such as KCl, whereas acidic melts are formed by addition of chloride acceptors such as AICI3 (Scheme 5.1-11). [Pg.179]

Examples of reactions that have been carried out in these antimony(III) ionic liquids include the cyclizations of l,2-bis-(9-anthryl)-ethane (Scheme 5.1-12) and 1,2-bis-(l-naphthyl)-ethane (Scheme 5.1-13). A more detailed review of antimony(III) chloride molten salt chemistry has been published by Pagni [4]. [Pg.179]

Nucleophilic displacement reactions One of the most common reactions in organic synthesis is the nucleophilic displacement reaction. The first attempt at a nucleophilic substitution reaction in a molten salt was carried out by Ford and co-workers [47, 48, 49]. FFere, the rates of reaction between halide ion (in the form of its tri-ethylammonium salt) and methyl tosylate in the molten salt triethylhexylammoni-um triethylhexylborate were studied (Scheme 5.1-20) and compared with similar reactions in dimethylformamide (DMF) and methanol. The reaction rates in the molten salt appeared to be intermediate in rate between methanol and DMF (a dipolar aprotic solvent loiown to accelerate Sn2 substitution reactions). [Pg.184]


See other pages where Molten salts reactions is mentioned: [Pg.118]    [Pg.358]    [Pg.340]    [Pg.339]    [Pg.118]    [Pg.754]    [Pg.264]    [Pg.383]    [Pg.118]    [Pg.358]    [Pg.340]    [Pg.339]    [Pg.118]    [Pg.754]    [Pg.264]    [Pg.383]    [Pg.348]    [Pg.175]    [Pg.204]    [Pg.203]    [Pg.518]    [Pg.482]    [Pg.37]    [Pg.100]    [Pg.514]    [Pg.24]    [Pg.320]    [Pg.323]    [Pg.351]    [Pg.41]    [Pg.175]    [Pg.206]    [Pg.708]    [Pg.44]    [Pg.175]    [Pg.183]   
See also in sourсe #XX -- [ Pg.285 ]

See also in sourсe #XX -- [ Pg.328 ]




SEARCH



Molten salts as reaction media

Molten salts chemical reaction

Molten salts corrosion reactions

Oxidation-reduction reactions molten salt extraction

Reactions oxidation-reduction, molten salt

© 2024 chempedia.info