Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular weight adhesion

In contrast, tertiary amines do not possess a proton to transfer, and the reaction of the Michael-type addition adduct with ECA can only initiate polymerization to form high molecular weight adhesive polymer, as shown earlier in Scheme 1. [Pg.863]

Alcohols also promote wettability and penetration of the wood surface. This may easily be shown by the following simple experiment. When equal sized drops of distilled water were placed on the surface of a freshly planed piece of southern yellow pine, the times for the drops to completely soak into the wood were observed. On the early wood it took 65 seconds and on the latewood 179 seconds. When similar drops of 50% ethanol solution were used instead of pure water, it required only six seconds to disappear into the earlywood and 26 seconds into the latewood. However, if a small drop of adhesive syrup, with no hardener added, was placed on the wood surface, no adsorption took place at all. It was surmised that the viscosity prevented its permeation. When the adhesive was diluted with 50% alcohol it was readily absorbed and produced a red stained spot on either earlywood or latewood areas. This showed that the low molecular weight adhesive molecules could readily permeate the wood structure before condensation with the curing agent. [Pg.295]

Hot melt laminating is a close relative of extrusion laminating. This process uses a lower molecular weight adhesive polymer that does not need an extruder to melt and pump it. The material s viscosity in the molten state can be low enough for... [Pg.248]

Polyurethanes. About 3% of the U.S. polyurethanes market in 1988 was derived from the condensation product of polyisocyanates with low molecular weight polyadipates having hydroxyl end groups (195). In 1986 this amounted to 29,000 t, or 4% of total adipic acid consumption. The percentage was similar in Western Europe. About 90% of these adipic acid containing polyurethanes are used in flexible or semirigid foams and elastomers, with the remainder used in adhesives, coatings, and spandex fibers. [Pg.247]

Vinyl organosol coatings, which incorporate a high molecular weight thermoplastic PVC organosol dispersion resin, are extremely flexible. Soluble thermosetting resins, including epoxy, phenoHc, and polyesters, are added to enhance the film s product resistance and adhesion. [Pg.450]

Gum ghatti is the calcium and magnesium salt of a complex polysaccharide which contains L-arabinose, D-galactose, D-mannose, and D-xylose and D-glucuronic acid (48) and has a molecular weight of approximately 12,000. On dispersion in water, gum ghatti forms viscous solutions of viscosity intermediate between those of gum arabic and gum karaya. These dispersions have emulsification and adhesive properties equivalent to or superior to those described for gum arabic. [Pg.434]

Hydrocarbon resin is a broad term that is usually used to describe a low molecular weight thermoplastic polymer synthesized via the thermal or catalytic polymerization of coal-tar fractions, cracked petroleum distillates, terpenes, or pure olefinic monomers. These resins are used extensively as modifiers in the hot melt and pressure sensitive adhesive industries. They are also used in numerous other appHcations such as sealants, printing inks, paints, plastics, road marking, carpet backing, flooring, and oil field appHcations. They are rarely used alone. [Pg.350]

G-5—G-9 Aromatic Modified Aliphatic Petroleum Resins. Compatibihty with base polymers is an essential aspect of hydrocarbon resins in whatever appHcation they are used. As an example, piperylene—2-methyl-2-butene based resins are substantially inadequate in enhancing the tack of 1,3-butadiene—styrene based random and block copolymers in pressure sensitive adhesive appHcations. The copolymerization of a-methylstyrene with piperylenes effectively enhances the tack properties of styrene—butadiene copolymers and styrene—isoprene copolymers in adhesive appHcations (40,41). Introduction of aromaticity into hydrocarbon resins serves to increase the solubiHty parameter of resins, resulting in improved compatibiHty with base polymers. However, the nature of the aromatic monomer also serves as a handle for molecular weight and softening point control. [Pg.354]

Hydrocarbon resins are used extensively as modifiers in adhesives, sealants, printing inks, paints and varnishes, plastics, road marking, flooring, and oil field appHcations. In most cases, they ate compounded with elastomers, plastics, waxes, or oils. Selection of a resin for a particular appHcation is dependent on composition, molecular weight, color, and oxidative and thermal stabiHty, as weU as cost. A listing of all hydrocarbon resin suppHers and the types of resins that they produce is impractical. A representative listing of commercially available hydrocarbon resins and their suppHers is included in Table 6. [Pg.357]

Styrenic block copolymers (SBCs) are also widely used in HMA and PSA appHcations. Most hot melt appHed pressure sensitive adhesives are based on triblock copolymers consisting of SIS or SBS combinations (S = styrene, I = isoprene B = butadiene). Pressure sensitive adhesives typically employ low styrene, high molecular weight SIS polymers while hot melt adhesives usually use higher styrene, lower molecular weight SBCs. Resins compatible with the mid-block of an SBC improves tack properties those compatible with the end blocks control melt viscosity and temperature performance. [Pg.358]

Butyl mbber, a copolymer of isobutjiene with 0.5—2.5% isoprene to make vulcanization possible, is the most important commercial polymer made by cationic polymerization (see Elastomers, synthetic-butyl rubber). The polymerization is initiated by water in conjunction with AlCl and carried out at low temperature (—90 to —100° C) to prevent chain transfer that limits the molecular weight (1). Another important commercial appHcation of cationic polymerization is the manufacture of polybutenes, low molecular weight copolymers of isobutylene and a smaller amount of other butenes (1) used in adhesives, sealants, lubricants, viscosity improvers, etc. [Pg.244]

Phenolic resin substantially increases open time and peel strength of the formulation (80). For example, higher methylol and methylene ether contents of the resin improves peel strength and elevated temperature resistance. Adhesive properties are also influenced by the molecular weight distribution of the phenoHc low molecular weight reduces adhesion (82). [Pg.304]

Intractable, rigid, rod-like polyimides have been synthesized by way of polyisoimides (50). A large number of high molecular weight polyisoimides were also synthesized and characterized for the purpose of preparing semiinterpenetrating (SIPN) polyimide matrices and adhesives (51—53). [Pg.402]


See other pages where Molecular weight adhesion is mentioned: [Pg.120]    [Pg.240]    [Pg.259]    [Pg.199]    [Pg.120]    [Pg.240]    [Pg.259]    [Pg.199]    [Pg.202]    [Pg.232]    [Pg.233]    [Pg.233]    [Pg.234]    [Pg.234]    [Pg.235]    [Pg.235]    [Pg.278]    [Pg.350]    [Pg.68]    [Pg.357]    [Pg.358]    [Pg.467]    [Pg.27]    [Pg.228]    [Pg.42]    [Pg.265]    [Pg.300]    [Pg.372]    [Pg.375]    [Pg.17]    [Pg.135]    [Pg.344]    [Pg.419]    [Pg.421]    [Pg.422]    [Pg.429]    [Pg.449]    [Pg.456]    [Pg.42]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Adhesion low molecular weight

Molecular adhesion

Mussel adhesives molecular weight

© 2024 chempedia.info