Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular vibration Raman spectroscopy

Both Raman and infrared spectroscopy provide qualitative and quantitative information about ehemieal species through the interaetion of radiation with molecular vibrations. Raman spectroscopy complements infrared spectroscopy, particularly for the study of non-polar bonds and certain functional groups. It is often used as an additional technique for elueidating the molecular structure and symmetry of a eompound. Raman spectroseopy also provides facile access to the low frequency region (less than 400 cm Raman shift), an area that is more difficult for infrared speetroseopy. [Pg.13]

Molecular Vibrations Raman and infrared spectroscopy Secondary tertiary structure. [Pg.5]

Nathan Hammer, a chemistry professor at the University of Mississippi, uses vibrational Raman spectroscopy to help us understand the effects of intermolecular forces on molecular structure and behavior. The vibrational spectrum provides a valuable probe of the electron distribution in the molecules as well. In the spectra shown, for example, a vibrational transition in normal pyrimidine shifts from roughly 1570 cm (where it overlaps with another transition in the spectrum at left) to a clearly distinct peak at over 1580 cm (the spectrum at right) when a water molecule attaches to one of the nitrogen atoms. This upward shift occurs because some electron density transfers from a... [Pg.368]

Principles and Characteristics As already indicated in Chp. 1.2.3, Raman scattering induced by radiation (UV/VIS/NIR lasers) in gas, liquid or solid samples contains information about molecular vibrations. Raman specfioscopy (RS) was restricted for a long time primarily to academic research and was a technique rarely used outside the research laboratory. Within an industrial spectroscopy laboratory, two of the more significant advances in recent years have been the allying of FT-Raman and FTIR capabilities, coupled with the availability of multivariate data analysis software. Raman process control (in-line, on-line, in situ, onsite) is now taking off with various robust commercial instrumental systems equipped with stable laser sources, stable and sensitive CCD detectors, inexpensive fibre optics, etc. With easy interfacing with process streams and easy multiplexing with normal (remote) spectrometers the technique is expected to have impact on product and process quality. [Pg.701]

Now we turn to vibrational Raman spectroscopy, in which the incident photon leaves some of its energy in the vibrational modes of the molecule it strikes or collects additional energy from a vibration that has already been excited. The gross selection rule for vibrational Raman transitions is that the molecular polarizability must change as the molecule vibrates. The polarizability plays a role in vibrational Raman spectroscopy because the molecule must be squeezed and stretched by the incident radiation in order that a vibrational excitation may occur during the photon-molecule collision. Both homonuclear and heteronuclear diatomic molecules swell and contract during a vibration, and the control of the nuclei over the electrons, and hence the molecular polarizability, changes too. Both types of diatomic molecule are therefore vibrationally Raman active. It follows that the information available from vibrational Raman spectra adds to that from infrared spectroscopy. [Pg.478]

Vibrational spectroscopy provides detailed infonnation on both structure and dynamics of molecular species. Infrared (IR) and Raman spectroscopy are the most connnonly used methods, and will be covered in detail in this chapter. There exist other methods to obtain vibrational spectra, but those are somewhat more specialized and used less often. They are discussed in other chapters, and include inelastic neutron scattering (INS), helium atom scattering, electron energy loss spectroscopy (EELS), photoelectron spectroscopy, among others. [Pg.1149]

Both infrared and Raman spectroscopy provide infonnation on the vibrational motion of molecules. The teclmiques employed differ, but the underlying molecular motion is the same. A qualitative description of IR and Raman spectroscopies is first presented. Then a slightly more rigorous development will be described. For both IR and Raman spectroscopy, the fiindamental interaction is between a dipole moment and an electromagnetic field. Ultimately, the two... [Pg.1151]

The vibrational states of a molecule are observed experimentally via infrared and Raman spectroscopy. These techniques can help to determine molecular structure and environment. In order to gain such useful information, it is necessary to determine what vibrational motion corresponds to each peak in the spectrum. This assignment can be quite difficult due to the large number of closely spaced peaks possible even in fairly simple molecules. In order to aid in this assignment, many workers use computer simulations to calculate the vibrational frequencies of molecules. This chapter presents a brief description of the various computational techniques available. [Pg.92]

Analysis of Surface Molecular Composition. Information about the molecular composition of the surface or interface may also be of interest. A variety of methods for elucidating the nature of the molecules that exist on a surface or within an interface exist. Techniques based on vibrational spectroscopy of molecules are the most common and include the electron-based method of high resolution electron energy loss spectroscopy (hreels), and the optical methods of ftir and Raman spectroscopy. These tools are tremendously powerful methods of analysis because not only does a molecule possess vibrational modes which are signatures of that molecule, but the energies of molecular vibrations are extremely sensitive to the chemical environment in which a molecule is found. Thus, these methods direcdy provide information about the chemistry of the surface or interface through the vibrations of molecules contained on the surface or within the interface. [Pg.285]

Polarization effects are another feature of Raman spectroscopy that improves the assignment of bands and enables the determination of molecular orientation. Analysis of the polarized and non-polarized bands of isotropic phases enables determination of the symmetry of the respective vibrations. For aligned molecules in crystals or at surfaces it is possible to measure the dependence of up to six independent Raman spectra on the polarization and direction of propagation of incident and scattered light relative to the molecular or crystal axes. [Pg.259]

D. Frequencies Molecules vibrate (stretch, bend, twist) even if they are cooled to 0 K. This is the basis of infrared/Raman spectroscopy, where absorption of energy occurs when the frequency of molecular... [Pg.8]

In the Bom-Oppenheimer picture the nuclei move on a potential energy surface (PES) which is a solution to the electronic Schrodinger equation. The PES is independent of the nuclear masses (i.e. it is the same for isotopic molecules), this is not the case when working in the adiabatic approximation since the diagonal correction (and mass polarization) depends on the nuclear masses. Solution of (3.16) for the nuclear wave function leads to energy levels for molecular vibrations (Section 13.1) and rotations, which in turn are the fundamentals for many forms of spectroscopy, such as IR, Raman, microwave etc. [Pg.56]

A detailed discussion about the functional form for f(v[r) can be found in Ref. [15]. The frequencies of molecular vibrations depend on the force constants which are themselves attributed to the bond geometry. It is then not surprising that useful information on bond deformation under stress can come from IR or Raman spectroscopy. [Pg.111]

Abstract Molecular spectroscopy is one of the most important means to characterize the various species in solid, hquid and gaseous elemental sulfur. In this chapter the vibrational, UV-Vis and mass spectra of sulfur molecules with between 2 and 20 atoms are critically reviewed together with the spectra of liquid sulfur and of solid allotropes including polymeric and high-pressure phases. In particular, low temperature Raman spectroscopy is a suitable technique to identify single species in mixtures. In mass spectra cluster cations with up to 56 atoms have been observed but fragmentation processes cause serious difficulties. The UV-Vis spectra of S4 are reassigned. The modern XANES spectroscopy has just started to be applied to sulfur allotropes and other sulfur compounds. [Pg.31]

Most informative in this context is vibrational spectroscopy since the number of signals observed depends on the molecular size as well as on the symmetry of the molecule and, if it is part of a condensed phase, of its environment. In particular, Raman spectroscopy has contributed much to the elucidation of the various allotropes of elemental sulfur and to the analysis of complex mixtures such as hquid and gaseous sulfur. [Pg.33]

Since the vibrational spectra of sulfur allotropes are characteristic for their molecular and crystalline structure, vibrational spectroscopy has become a valuable tool in structural studies besides X-ray diffraction techniques. In particular, Raman spectroscopy on sulfur samples at high pressures is much easier to perform than IR spectroscopical studies due to technical demands (e.g., throughput of the IR beam, spectral range in the far-infrared). On the other hand, application of laser radiation for exciting the Raman spectrum may cause photo-induced structural changes. High-pressure phase transitions and structures of elemental sulfur at high pressures were already discussed in [1]. [Pg.82]

Vibrational spectroscopy and in particular Raman spectroscopy is by far the most useful spectroscopic technique to qualitatively characterize polysulfide samples. The fundamental vibrations of the polysulfide dianions with between 4 and 8 atoms have been calculated by Steudel and Schuster [96] using force constants derived partly from the vibrational spectra of NayS4 and (NH4)2Ss and partly from cydo-Sg. It turned out that not only species of differing molecular size but also rotational isomers like Ss of either Cy or Cs symmetry can be recognized from pronounced differences in their spectra. The latter two anions are present, for instance, in NaySg (Cs) and KySg (Cy), respectively (see Table 2). [Pg.142]

The vibrations of molecular bonds provide insight into bonding and stmcture. This information can be obtained by infrared spectroscopy (IRS), laser Raman spectroscopy, or electron energy loss spectroscopy (EELS). IRS and EELS have provided a wealth of data about the stmcture of catalysts and the bonding of adsorbates. IRS has also been used under reaction conditions to follow the dynamics of adsorbed reactants, intermediates, and products. Raman spectroscopy has provided exciting information about the precursors involved in the synthesis of catalysts and the stmcture of adsorbates present on catalyst and electrode surfaces. [Pg.184]

Raman spectroscopy detects the scattering of light, not its absorption. Superposed on the frequency of the scattered light are the frequencies of the molecular vibrations. The detection occurs in the IR spectral region while the excitation happens in the visible region. Since laser light sources have become well developed, Raman spectroscopy has become an important tool for the analysis of biomolecules. [Pg.11]

CARS spectroscopy utilizes three incident fields including a pump field (coi), a Stokes field (CO2 C02nonlinear polarization at cOcars = 2c0i — CO2. When coi — CO2 coincides with one of the molecular-vibration frequencies of a given sample, the anti-Stokes Raman signal is resonantly generated [22, 23]. We induce the CARS polarization by the tip-enhanced field at the metallic tip end of the nanometric scale. [Pg.29]

Low-frequency vibrations of molecular submonolayers detected by time-domain raman spectroscopy. /. Mol. Struct., 735-736, 169-177. [Pg.114]

Fujiyoshi, S., Ishibashi, T. and Onishi, H. (2006) Molecular vibrations at a liquid-liquid interface observed by fourth-order Raman spectroscopy. J. Phys. Chem. B, 110, 9571-9578. [Pg.115]

NIS of synchrotron radiation yields details of the dynamics of Mossbauer nuclei, while conventional MS yields only limited information in this respect (comprised in the Lamb-Mossbauer factor /). NIS shows some similarity with Resonance Raman- and IR-spectroscopy. The major difference is that, instead of an electronic resonance (Raman and IR), a nuclear resonance is employed (NIS). NIS is site-selective, i.e., only those molecular vibrations that contribute to the overall... [Pg.477]


See other pages where Molecular vibration Raman spectroscopy is mentioned: [Pg.884]    [Pg.884]    [Pg.208]    [Pg.36]    [Pg.208]    [Pg.8]    [Pg.259]    [Pg.203]    [Pg.1179]    [Pg.1192]    [Pg.1716]    [Pg.2553]    [Pg.158]    [Pg.208]    [Pg.318]    [Pg.318]    [Pg.33]    [Pg.435]    [Pg.442]    [Pg.45]    [Pg.287]    [Pg.11]    [Pg.78]    [Pg.498]    [Pg.3]    [Pg.13]    [Pg.25]    [Pg.34]    [Pg.517]   
See also in sourсe #XX -- [ Pg.238 , Pg.239 ]




SEARCH



Molecular spectroscopy

Molecular vibrations

Molecular vibrations resonance Raman spectroscopy

Spectroscopy Vibrational Raman

Vibration /vibrations spectroscopy

Vibration /vibrations spectroscopy Raman

Vibration Raman spectroscopy

Vibrational molecular

Vibrational spectroscopy molecular vibrations

Vibrational spectroscopy, molecular

© 2024 chempedia.info