Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure valence-shell electron-pair

Section 8.13 molecular structure valence shell electron-pair repulsion (VSEPR) model linear structure trigonal planar structure tetrahedral structure trigonal pyramid trigonal bipyramid octahedral structure square planar structure... [Pg.403]

We now turn from the use of quantum mechanics and its description of the atom to an elementary description of molecules. Although most of the discussion of bonding in this book uses the molecular orbital approach to chemical bonding, simpler methods that provide approximate pictures of the overall shapes and polarities of molecules are also very useful. This chapter provides an overview of Lewis dot structures, valence shell electron pair repulsion (VSEPR), and related topics. The molecular orbital descriptions of some of the same molecules are presented in Chapter 5 and later chapters, but the ideas of this chapter provide a starting point for that more modem treatment. General chemistry texts include discussions of most of these topics this chapter provides a review for those who have not used them recently. [Pg.51]

Skill 21.2 Apply the concepts of Lewis structures, valence-shell electron-pair repulsion, and hybridization to describe molecular geometry and bonding. [Pg.208]

The Lewis structures encountered in Chapter 2 are two-dimensional representations of the links between atoms—their connectivity—and except in the simplest cases do not depict the arrangement of atoms in space. The valence-shell electron-pair repulsion model (VSEPR model) extends Lewis s theory of bonding to account for molecular shapes by adding rules that account for bond angles. The model starts from the idea that because electrons repel one another, the shapes of simple molecules correspond to arrangements in which pairs of bonding electrons lie as far apart as possible. Specifically ... [Pg.220]

In one respect the valence shell electron-pair repulsion theory is no better (and no worse) than other theories of molecular structure. Predictions can only be made when the constitution is known, i.e. when it is already known which and how many atoms are joined... [Pg.70]

To derive the values of the coefficients at, Ph y, and 8i so that the bond energy is maximized and the correct molecular structure results, the mutual interactions between the electrons have to be considered. This requires a great deal of computational expenditure. However, in a qualitative manner the interactions can be estimated rather well that is exactly what the valence shell electron-pair repulsion theory accomplishes. [Pg.88]

The most widely used qualitative model for the explanation of the shapes of molecules is the Valence Shell Electron Pair Repulsion (VSEPR) model of Gillespie and Nyholm (25). The orbital correlation diagrams of Walsh (26) are also used for simple systems for which the qualitative form of the MOs may be deduced from symmetry considerations. Attempts have been made to prove that these two approaches are equivalent (27). But this is impossible since Walsh s Rules refer explicitly to (and only have meaning within) the MO model while the VSEPR method does not refer to (is not confined by) any explicitly-stated model of molecular electronic structure. Thus, any proof that the two approaches are equivalent can only prove, at best, that the two are equivalent at the MO level i.e. that Walsh s Rules are contained in the VSEPR model. Of course, the transformation to localised orbitals of an MO determinant provides a convenient picture of VSEPR rules but the VSEPR method itself depends not on the independent-particle model but on the possibility of separating the total electronic structure of a molecule into more or less autonomous electron pairs which interact as separate entities (28). The localised MO description is merely the simplest such separation the general case is our Eq. (6)... [Pg.78]

In this chapter a few simple rules for predicting molecular structures will be investigated. We shall examine first the valence shell electron pair repulsion (VSEPR) model, and then a purely molecular orbital treatment. [Pg.650]

The molecular structures adopted by simple carbonyl complexes are generally compatible with predictions based on valence shell electron pair repulsion theory. Three representative examples from the first transition series are shown in Fig. 15.2. [Pg.854]

Like so many other molecular properties, shape is determined by the electronic structure of the bonded atoms. The approximate shape of a molecule can often be predicted by using what is called the valence-shell electron-pair repulsion (VSEPR) model. Electrons in bonds and in lone pairs can be thought of as "charge clouds" that repel one another and stay as far apart as possible, thus causing molecules to assume specific shapes. There are only two steps to remember in applying the VSEPR method ... [Pg.264]

Of the 20th century s development of structural chemistry, we mention the discovery of the electron-pair covalent bond by Lewis [22] which remains a fundamental tenet. It is remembered in every line we have drawn to represent a linkage and is present in most models of molecular structure, such as, for example, the valence shell electron pair repulsion (VSEPR) model [23]. [Pg.40]

Some simple rules were supported by empirial evidence, valence shell electron pair repulsion model (VSEPR) and MO calculations, both semiempirical and ab initio. These rules could explain those features of molecular geometry which have been characterized by structural investigations using spectroscopic and diffraction techniques. [Pg.117]

Valence shell electron pair repulsion theory (VSEPR) provides a method for predicting the shape of molecules, based on the electron pair electrostatic repulsion. It was described by Sidgwick and Powell" in 1940 and further developed by Gillespie and Nyholm in 1957. In spite of this method s very simple approach, based on Lewis electron-dot structures, the VSEPR method predicts shapes that compare favorably with those determined experimentally. However, this approach at best provides approximate shapes for molecules, not a complete picture of bonding. The most common method of determining the actual stmctures is X-ray diffraction, although electron diffraction, neutron diffraction, and many types of spectroscopy are also used. In Chapter 5, we will provide some of the molecular orbital arguments for the shapes of simple molecules. [Pg.57]

The introduction of Valence Bond theory has motivated the search for structural regularities that can be interpreted by models of local electronic features, such as the powerful model of Valence Shell Electron Pair Repulsion [93,94] theory. Alternative approaches, based on Molecular Orbital theory, have led to the discovery of important rules, such as the Woodward-Hoffmann orbital symmetry rules [95] and the frontier orbital approach of Fukui [96,97], As a result of these advances and the spectacular successes of ab initio computations on molecular... [Pg.2]

Once a Lewis structure is drawn, you can determine the molecular geometry, or shape, of the molecule. The model used to determine the molecular shape is referred to as the Valence Shell Electron Pair Repulsion model, or VSEPR model. This model is based on an arrangement that minimizes the repulsion of shared and unshared pairs of electrons around the central atom. [Pg.259]


See other pages where Molecular structure valence-shell electron-pair is mentioned: [Pg.391]    [Pg.380]    [Pg.391]    [Pg.380]    [Pg.73]    [Pg.146]    [Pg.66]    [Pg.92]    [Pg.80]    [Pg.73]    [Pg.88]    [Pg.940]    [Pg.1358]    [Pg.269]    [Pg.329]    [Pg.3]    [Pg.1234]    [Pg.627]    [Pg.97]    [Pg.76]    [Pg.416]    [Pg.349]    [Pg.1081]    [Pg.9]    [Pg.2]    [Pg.368]    [Pg.47]   


SEARCH



Electronics shells

Electrons valence-shell electron-pair

Molecular electronic structure

Molecular pairing

Molecular structure valence

Molecular valence shell

Paired valence

Shell structure

Shell, electron valence

Skill 1.3c-Predict molecular geometries using Lewis dot structures and hybridized atomic orbitals, e.g., valence shell electron pair repulsion model (VSEPR)

Structure valency

Valence Shell Electron Pair

Valence electron

Valence electronic structure

Valence electrons Valency

Valence shell electron pair repulsion predicting molecular structure using

Valence shell electron-pair repulsion predicting molecular structure

© 2024 chempedia.info