Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-pair electrostatic repulsion

Valence shell electron pair repulsion theory (VSEPR) provides a method for predicting the shape of molecules, based on the electron pair electrostatic repulsion. It was described by Sidgwick and Powell" in 1940 and further developed by Gillespie and Nyholm in 1957. In spite of this method s very simple approach, based on Lewis electron-dot structures, the VSEPR method predicts shapes that compare favorably with those determined experimentally. However, this approach at best provides approximate shapes for molecules, not a complete picture of bonding. The most common method of determining the actual stmctures is X-ray diffraction, although electron diffraction, neutron diffraction, and many types of spectroscopy are also used. In Chapter 5, we will provide some of the molecular orbital arguments for the shapes of simple molecules. [Pg.57]

Unlike the forces between ions which are electrostatic and without direction, covalent bonds are directed in space. For a simple molecule or covalently bonded ion made up of typical elements the shape is nearly always decided by the number of bonding electron pairs and the number of lone pairs (pairs of electrons not involved in bonding) around the central metal atom, which arrange themselves so as to be as far apart as possible because of electrostatic repulsion between the electron pairs. Table 2.8 shows the essential shape assumed by simple molecules or ions with one central atom X. Carbon is able to form a great many covalently bonded compounds in which there are chains of carbon atoms linked by single covalent bonds. In each case where the carbon atoms are joined to four other atoms the essential orientation around each carbon atom is tetrahedral. [Pg.37]

The second contribution to the energy arises from the electrostatic repulsion between pairs III electrons. This interaction depends on the electron-electron distance and, as we have seen, is calculated from infegrals such as ... [Pg.69]

What Are the Key Ideas The central ideas of this chapter are, first, that electrostatic repulsions between electron pairs determine molecular shapes and, second, that chemical bonds can be discussed in terms of two quantum mechanical theories that describe the distribution of electrons in molecules. [Pg.218]

Next, let us explore the consequences of the charge of the electrons on the pair density. Here it is the electrostatic repulsion, which manifests itself through the l/r12 term in the Hamiltonian, which prevents the electrons from coming too close to each other. This effect is of course independent of the spin. Usually it is this effect which is called simply electron correlation and in Section 1.4 we have made use of this convention. If we want to make the distinction from the Fermi correlation, the electrostatic effects are known under the label Coulomb correlation. [Pg.39]

The VSEPR model was originally expressed in these terms, but because Pauli repulsions are not real forces and should not be confused with electrostatic forces, it is preferable to express the nonequivalence of electron pairs of different kinds in terms of the size and shape of their domains, as we have done in this chapter. [Pg.98]

The fundamental basis for the VSEPR model is provided by the Pauli principle and not by electrostatics. The fundamental assumption of the model is that the electron pairs in the valence shell of an atom keep as far apart as possible, in other words they appear to repel each other. Electrons exhibit this behavior as a consequence of the Pauli exclusion principle of same spin electrons and not primarily as a consequence of their electrostatic repulsion. The role of the Pauli principle was clearly stated in the first papers on the VSEPR model (Gillespie Nyholm, 1957 Gillespie Nyholm, 1958) but this role has sometimes been ignored and the model has been incorrectly presented in terms of electrostatics. [Pg.282]

Return to the case of LiF. Lithium ionizes readily, but has little affinity for electrons (I = ionization energy = 5.4 eV and A = electron affinity = 0eV.). On the other hand, fluorine is difficult to ionize, but has considerable electron affinity (I = 17.4eV. and A = -3.6eV.). Thus, when Li and F atoms are close neighbors, electrons can transfer to make Li+ and I. These then attract electrostatically until compression of their ion-cores prevent them from contracting further. In a solid crystal, there are both attractive +/- pairs, and repulsive (+/+ as well as -/-) pairs. However, for large arrays, there is a net attraction. This can be shown most simply by examining a linear chain of +q, and -q charges (Kittel, 1966). [Pg.41]

The electron pairs, whether bonding or lone pairs, arrange themselves around a central atom as far apart as possible. This minimises the electrostatic repulsion between the electron pairs. [Pg.40]

Under the Born-Oppenheimer approximation, two major methods exist to determine the electronic structure of molecules The valence bond (VB) and the molecular orbital (MO) methods (Atkins, 1986). In the valence bond method, the chemical bond is assumed to be an electron pair at the onset. Thus, bonds are viewed to be distinct atom-atom interactions, and upon dissociation molecules always lead to neutral species. In contrast, in the MO method the individual electrons are assumed to occupy an orbital that spreads the entire nuclear framework, and upon dissociation, neutral and ionic species form with equal probabilities. Consequently, the charge correlation, or the avoidance of one electron by others based on electrostatic repulsion, is overestimated by the VB method and is underestimated by the MO method (Atkins, 1986). The MO method turned out to be easier to apply to complex systems, and with the advent of computers it became a powerful computational tool in chemistry. Consequently, we shall concentrate on the MO method for the remainder of this section. [Pg.106]

Hence, a very important factor of preferential dianion formation is the decrease in electrostatic repulsion between anion-radicals. By changing the ion-pair stability, particularly, by solvent selection, one can manage the equilibrium of liquid-phase electron-transfer reactions. [Pg.112]


See other pages where Electron-pair electrostatic repulsion is mentioned: [Pg.66]    [Pg.66]    [Pg.85]    [Pg.85]    [Pg.224]    [Pg.358]    [Pg.828]    [Pg.39]    [Pg.177]    [Pg.117]    [Pg.66]    [Pg.604]    [Pg.41]    [Pg.174]    [Pg.63]    [Pg.73]    [Pg.74]    [Pg.37]    [Pg.12]    [Pg.87]    [Pg.171]    [Pg.283]    [Pg.286]    [Pg.27]    [Pg.14]    [Pg.63]    [Pg.76]    [Pg.18]    [Pg.5]    [Pg.155]    [Pg.154]    [Pg.19]    [Pg.297]    [Pg.212]    [Pg.228]    [Pg.101]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Electron pair repulsion

Electronic repulsion

Electronics pair repulsion

© 2024 chempedia.info