Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular orbitals cycloaddition reactions

Let us now examine the Diels-Alder cycloaddition from a molecular orbital perspective Chemical experience such as the observation that the substituents that increase the reac tivity of a dienophile tend to be those that attract electrons suggests that electrons flow from the diene to the dienophile during the reaction Thus the orbitals to be considered are the HOMO of the diene and the LUMO of the dienophile As shown m Figure 10 11 for the case of ethylene and 1 3 butadiene the symmetry properties of the HOMO of the diene and the LUMO of the dienophile permit bond formation between the ends of the diene system and the two carbons of the dienophile double bond because the necessary orbitals overlap m phase with each other Cycloaddition of a diene and an alkene is said to be a symmetry allowed reaction... [Pg.414]

Refer to the molecular orbital diagrams of allyl cation (Figure 10 13) and those presented earlier in this chapter for ethylene and 1 3 butadiene (Figures 10 9 and 10 10) to decide which of the following cycloaddition reactions are allowed and which are forbidden according to the Woodward-Floffmann rules... [Pg.422]

Chemical Properties. The chemistry of ketenes is dominated by the strongly electrophilic j/)-hybridi2ed carbon atom and alow energy lowest unoccupied molecular orbital (LUMO). Therefore, ketenes are especially prone to nucleophilic attack at Cl and to [2 + 2] cycloadditions. Less frequent reactions are the so-called ketene iasertion, a special case of addition to substances with strongly polarized or polarizable single bonds (37), and the addition of electrophiles at C2. For a review of addition reactions of ketenes see Reference 8. [Pg.473]

Perfluoroalkyl groups adjacent to multiple bond systems lower the frontier molecular orbitals (FMOs) Therefore, cycloaddition reactions preferentially occur with electron-rich multiple-bond systems The preference of bis(trifluoromethyl)-substituted hetero-l,3-dienes for polar reacuons makes them excellent model compounds for developing new types of diene reactions deviating from the well documented Diels-Alder scheme (pathway 1) A systematic study of the reactions of diene (1 =2-3=4)-dienophile (5=6) combinations reveals new synthetic possibilities that have not yet been fully exploited as tools for preparative organic cherrustry (equation 25)... [Pg.853]

Most reactions discussed can be classified into two types of [n s+iAs cycloadditions, the normal and inverse electron-demand cycloaddition reactions, based on the relative energies of the frontier molecular orbitals of the diene and the dieno-phile (Scheme 4.2) [4]. [Pg.152]

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]

One cannot discuss Lewis acid-catalyzed cycloaddition reactions in the present context without trying to understand the reaction course mechanistically, e.g. using a frontier molecular orbital (FMO) point of reasoning, or theoretical calculations of transition state structures. [Pg.302]

Cycloaddition reactions are those in which two unsaturated molecules add together to yield a cyclic product. For example, Diels-AJder reaction between a diene (four tt electrons) and a dienophile (two tt electrons) yields a cyclohexene. Cycloadditions can take place either by suprafacial or antarafacial pathways. Suprafacial cycloaddition involves interaction between lobes on the same face of one component and on the same face of the second component. Antarafacial cycloaddition involves interaction between lobes on the same face of one component ancl on opposite faces of the other component. The reaction course in a specific case can be found by looking at the symmetry of the HOMO of one component and the lowest unoccupied molecular orbital (LUMO) of the other component. [Pg.1198]

Lowest unoccupied molecular orbital (LUMO), 500, 1181 cycloaddition reactions and. 1188-1189... [Pg.1304]

An interpretation based on frontier molecular orbital theory of the regiochemistry of Diels Alder and 1,3-dipolar cycloaddition reactions of the triazepine 3 is available.343 2,4,6-Trimethyl-benzonitrile oxide, for example, yields initially the adduct 6.344... [Pg.458]

According to frontier molecular orbital theory (FMO), the reactivity, regio-chemistry and stereochemistry of the Diels-Alder reaction are controlled by the suprafacial in phase interaction of the highest occupied molecular orbital (HOMO) of one component and the lowest unoccupied molecular orbital (LUMO) of the other. [17e, 41-43, 64] These orbitals are the closest in energy Scheme 1.14 illustrates the two dominant orbital interactions of a symmetry-allowed Diels-Alder cycloaddition. [Pg.22]

As applied to cycloaddition reactions the rule is that reactions are allowed only when all overlaps between the HOMO of one reactant and the LUMO of the other are such that a positive lobe overlaps only with another positive lobe and a negative lobe only with another negative lobe. We may recall that monoalkenes have two n molecular orbitals (p. 9) and that conjugated dienes have four (p. 36), as shown in Figure 15.1. A concerted cyclization of two monoalkenes (a 2 -f- 2 reaction) is not allowed because it would require that a positive lobe overlap with a negative lobe (Fig. 15.2). On the other hand, the Diels-Alder reaction (a 2 -f 4 reaction) is allowed, whether considered from either direction (Fig. 15.3). [Pg.1068]

A theoretical study based on PM3 frontier molecular orbital (FMO) and potential energy surface (PES) analysis at the restricted Hartree-Fock (RHF)/6-31+G level was performed to examine the reaction of l-amino-2-ethoxycarbonyl-pyridinium mesitylenesulfonate and acrylonitrile in the presence of Hilnig s base leading to the formation of l,2-dihydropyrido[l,2-A]pyridazinium inner salt 17 <1999JOC9001>. The calculations indicated that both the [3+2] cycloaddition reaction and the ring expansion occurred in a concerted manner rather than through a stepwise mechanism via a zwitterionic intermediate 16 (Scheme 1). [Pg.82]

The above complete regiospecificity of the cycloaddition across only the C=S+ bond was rationalized in terms of frontier molecular orbital coefficients in the salt 95. This cycloaddition was considered to be a LUMOsajt -HOMOdiene reaction. MOP AC 93 PM3 calculation of 95 showed the values of LLJMO coefficients for C(6), S, and N are 0.508, —0.502 and 0.364, respectively, as in Figure 1. These values strongly suggest the preference of the reaction site of the C=S+ bond. [Pg.499]

The Diels-Alder reaction (47t 2ir cycloaddition) is by far the best studied reaction of dienes from both theoretical and experimental viewpoints. Frontier molecular orbital theory predicts three types of Diels-Alder reaction. Structural effects on rate constants show the existence of two types of reaction ... [Pg.717]

In the course of investigation of reactivity of the mesoionic compound 44 (Scheme 2) the question arose if this bicyclic system participates in Diels-Alder reactions as an electron-rich or an electron-poor component <1999T13703>. The energy level of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbitals were calculated by PM3 method. Comparison of these values with those of two different dienophiles (dimethyl acetylenedicarboxylate (DMAD) and 1,1-diethylamino-l-propyne) suggested that a faster cycloaddition can be expected with the electron-rich ynamine, that is, the Diels-Alder reaction of inverse electron demand is preferred. The experimental results seemed to support this assumption. [Pg.962]

Fig. 22 The Diels-Alder cycloaddition between the dienophile [54] and diene [53 yields two diastereoisomers [55] and [56]. Attenuated substrate analogues [57] and [58 were used in molecular orbital calculations of this reaction. Fig. 22 The Diels-Alder cycloaddition between the dienophile [54] and diene [53 yields two diastereoisomers [55] and [56]. Attenuated substrate analogues [57] and [58 were used in molecular orbital calculations of this reaction.
Radical ions - charged species with unpaired electrons - are easily generated by a number of methods that are discussed in more detail below. Their properties have been characterized by several spectroscopic techniques, and their structures and spin density contributions have been the subject of molecular orbital calculations at different levels of sophistication. The behaviour of radical ions in rearrangement and isomerization reactions as well as in bond-cleavage reactions has been extensively studied [for recent reviews see Refs. 11-13 and references cited therein]. Useful synthetic applications, such as the radical-cation-catalyzed cycloaddition [14-20] or the anfi-Markovnikov addition of nucleophiles to alkenyl radical cations [21-25], have been well documented. In... [Pg.78]

The interpretation of chemical reactivity in terms of molecular orbital symmetry. The central principle is that orbital symmetry is conserved in concerted reactions. An orbital must retain a certain symmetry element (for example, a reflection plane) during the course of a molecular reorganization in concerted reactions. It should be emphasized that orbital-symmetry rules (also referred to as Woodward-Hoffmann rules) apply only to concerted reactions. The rules are very useful in characterizing which types of reactions are likely to occur under thermal or photochemical conditions. Examples of reactions governed by orbital symmetry restrictions include cycloaddition reactions and pericyclic reactions. [Pg.524]

Theoretical calculations have been an important means of rationalizing the electronic course of hetero-Diels-Alder and related pericylic reactions for the formation of 1,2-thiazines 25 and 26. MOP AC 93 PM3 calculations have been used to deduce the regioselectivity of [4-1-2] cycloaddition reactions involving thiazinylium perchlorate 27 (Scheme 1) <1999TL1505>. Due to the higher lowest unoccupied molecular orbital (LUMO) coefficient at C-6 compared to N-2, the C-6 and S-1 behave preferentially as the dienophile double bond in cycloaddition reactions of this substrate with butadienes 28. [Pg.516]


See other pages where Molecular orbitals cycloaddition reactions is mentioned: [Pg.909]    [Pg.69]    [Pg.325]    [Pg.153]    [Pg.213]    [Pg.277]    [Pg.1178]    [Pg.1300]    [Pg.474]    [Pg.374]    [Pg.500]    [Pg.778]    [Pg.148]    [Pg.114]    [Pg.35]    [Pg.317]    [Pg.463]    [Pg.430]    [Pg.28]    [Pg.437]    [Pg.2]    [Pg.145]    [Pg.86]    [Pg.332]    [Pg.332]   
See also in sourсe #XX -- [ Pg.887 ]




SEARCH



1.3- Dipolar cycloaddition reactions frontier molecular orbital theory

1.3- dipolar cycloaddition reactions molecular orbitals

Highest occupied molecular orbital cycloaddition reactions and

Lowest unoccupied molecular orbital cycloaddition reactions and

Orbitals reaction

Reaction molecular

© 2024 chempedia.info