Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,3-dipolar cycloaddition reactions molecular orbitals

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]

An interpretation based on frontier molecular orbital theory of the regiochemistry of Diels Alder and 1,3-dipolar cycloaddition reactions of the triazepine 3 is available.343 2,4,6-Trimethyl-benzonitrile oxide, for example, yields initially the adduct 6.344... [Pg.458]

The structural requirements of the mesomeric betaines described in Section III endow these molecules with reactive -electron systems whose orbital symmetries are suitable for participation in a variety of pericyclic reactions. In particular, many betaines undergo 1,3-dipolar cycloaddition reactions giving stable adducts. Since these reactions are moderately exothermic, the transition state can be expected to occur early in the reaction and the magnitude of the frontier orbital interactions, as 1,3-dipole and 1,3-dipolarophile approach, can be expected to influence the energy of the transition state—and therefore the reaction rate and the structure of the product. This is the essence of frontier molecular orbital (EMO) theory, several accounts of which have been published. 16.317 application of the FMO method to the pericyclic reactions of mesomeric betaines has met with considerable success. The following section describes how the reactivity, electroselectivity, and regioselectivity of these molecules have been rationalized. [Pg.89]

The kinetic aspects of these reactions were inspected by the frontier molecular orbital (FMO) method for the 1,3-dipolar cycloaddition reactions of R Ns + R2NCO or R2N3 + R NCO affording the corresponding tetra-zolinone (97JHC113). Making use of the Klopman-Salem equation, from... [Pg.386]

From the foregoing survey of heterocyclic hydrazonoyl halides, it appears that the main emphasis has been restricted to both their preparation and use as intermediates for further synthesis. Large areas of their chemistry, particularly regarding their physical and biological properties, remain to be developed. A deeper understanding of some aspects of their 1,3-dipolar cycloaddition reactions, such as regiochemistry and site selectivity in terms of the frontier molecular orbital method, is also needed. [Pg.334]

Dipolar cycloaddition reactions are generally classified into three types, dipole HO controlled, dipole LU controlled or HO,LU controlled, depending upon the relative energies of the dipole and dipolarophile frontier molecular orbitals. If the energy gap separating the dipole HOMO from the dipolarophile LUMO is smaller than that between the dipole LUMO and the dipolarophile HOMO, then the reaction is said to be dipole HO controlled. If the dipole LUMO-dipolarophile HOMO energy gap is smaller, then dipole LU control prevails. If the energy difference between the dipole HOMO and the dipolarophile LUMO is about the same as that between the dipole LUMO and the dipolarophile HOMO, dien neither interaction dominates and HO,LU control is operable. [Pg.248]

Theoretical studies are also done to interpret the synthesis reactions and mechanism of reactions. The regioselectivity of 1,3-dipolar cycloaddition reaction between substituted trimethylstannyl-ethynes and nitrile oxides yielding isoxazoles, was interpreted by the application of frontier electron theory <93CPB478>. By the combination of experimental and molecular orbital (ab initio) studies, a multistep mechanism is proposed for unimolecular radical chemistry of isoxazoles in the gas phase <920MS(27)317>. [Pg.225]

The limited number of molecular orbital calculations, which deal with the regioselectivities of isomunchnone 1,3-dipolar cycloaddition reactions, are covered in Section 4.4.3.2. [Pg.546]

Scheme 14). The regiochemical outcome of the 1,3-dipolar cycloaddition reactions of the cyclic five-membered ring carbonyl yUde 48 with a variety of acycUc and cycHc alkenes having activated or inactivated r-bonds can be ra-tionaUzed [78,79] on the basis of frontier molecular orbital considerations, with the HOMO and LUMO of the carbonyl ylides dominating the reactions with electron-deficient and electron-rich dipolarophiles, respectively (Scheme 14). [Pg.168]

The transition state of the concerted 1,3-dipolar cycloaddition reaction is controlled by the frontier molecular orbitals of the substrates. Hence, the reaction of dipoles with dipolarophiles involves either a LUMO-dipole/ HOMO-dipolarophile reaction or a HOMO-dipole/LUMO-dipolarophile interaction, depending on the nature of the dipole and the dipolarophile. [Pg.2]

Molecular orbital studies of 1,3-dipolar cycloaddition reactions are discussed in Ref 18. [Pg.294]

In accordance with theoretical predictions (90), the concerted pathway for 1,3-dipolar cycloaddition is replaced by a two-step mechanism when two requirements are satisfied. One of the criteria involves an extremely large difference in the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies of the reaction partners. The other factor involves a pronounced steric hindrance at one termini of the 1,3-dipole (190). The first case of a stepwise... [Pg.351]

The relative frontier molecular orbital (FMO) energies of the reagents are very important for the catalytic control of 1,3-dipolar cycloadditions. In order to control the stereochemical outcome of a reaction with a substoichiometric amount of a ligand-metal catalyst, it is desirable that a large rate acceleration is obtained in order to assure that the reaction only takes place in the sphere of the metal and the chiral ligand. The FMO considerations will be outlined in the following using nitrones as an example. [Pg.864]

Molecular orbital models are valuable aids in understanding the reactivity, regioselectivity, and stereospecificity phenomena exhibited by cycloaddition reactions and in predicting reactivity and product identities for addend pairs. Symmetry-energy correlation diagrams indicate that the 1,3-dipolar cyclo-... [Pg.222]

The presence of an aroyl fragment in azomethine ylides obtained from opening of three-membered rings in the case of dipolarophiles with high LUMO (lowest unoccupied molecular orbital) energy or in the absence of an external dipolarophile can lead to the possibility of such unusual reactions as intramolecular 1,3-dipolar cycloaddition [80]. Examples of such reactions are the thermal isomerization of aroyl aziridines 63 into a pyrrole derivative 64 [81, 82] or into 2,5-diphenyloxazole 65 (in the presence of diphenyliodonium iodide) [83] (Scheme 1.16). [Pg.14]

The molecular geometries and the frontier orbital energies of heterophospholes 28-31 were obtained from density functional theory (DFT) calculations at the B3LYP/6-311- -G, level. The 1,3-dipolar cycloaddition reactivity of these heterophospholes in reactions with diazo compounds was evaluated from frontier molecular orbital (FMO) theory. Among the different types of heterophospholes considered, the 2-acyl-l,2,3-diazaphosphole 28, 377-1,2,3,4-triazaphosphole 30, and 1,3,4-thiazaphosphole 31 were predicted to have the highest dipolarophilic reactivities. These conclusions are in qualitative agreement with available experimental results <2003JP0504>. [Pg.585]

The regioselectivity of the 1,3-dipolar cycloadditions of azides to alkenes is usually difficult to predict due to the similar energies for the transition states which involve either the HOMO (dipole) or the LUMO (dipole). The results of a study which utilized 5-alkoxy-3-pyrrolin-2-ones as dipolar-ophiles in reactions with a variety of aryl azides seemed to reflect this problem the results suggested that the low regioselectivity observed was due to the frontier molecular orbital interactions between dipole and dipolarophile, and not any steric hindrance offered by the 5-alkoxy function <84H(22)2363>. [Pg.111]


See other pages where 1,3-dipolar cycloaddition reactions molecular orbitals is mentioned: [Pg.213]    [Pg.35]    [Pg.256]    [Pg.704]    [Pg.8]    [Pg.180]    [Pg.1082]    [Pg.827]    [Pg.8]    [Pg.248]    [Pg.1191]    [Pg.827]    [Pg.570]    [Pg.129]    [Pg.445]    [Pg.3]    [Pg.568]    [Pg.285]    [Pg.114]    [Pg.430]    [Pg.2]    [Pg.709]    [Pg.840]    [Pg.12]    [Pg.686]    [Pg.1073]    [Pg.1073]    [Pg.50]    [Pg.187]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



1.3- Dipolar reactions

Cycloaddition reactions 1,3-dipolar

Cycloadditions 1,3-dipolar reactions

Molecular orbitals cycloaddition reactions

Orbitals reaction

Reaction molecular

© 2024 chempedia.info