Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular orbital linear combination atomic orbitals approximation

The formal analysis of the mathematics required incorporating the linear combination of atomic orbitals molecular orbital approximation into the self-consistent field method was a major step in the development of modem Hartree-Fock-Slater theory. Independently, Hall (57) and Roothaan (58) worked out the appropriate equations in 1951. Then, Clement (8,9,63) applied the procedure to calculate the electronic structures of many of the atoms in the Periodic Table using linear combinations of Slater orbitals. Nowadays linear combinations of Gaussian functions are the standard approximations in modem LCAO-MO theory, but the Clement atomic calculations for helium are recognized to be very instructive examples to illustrate the fundamentals of this theory (67-69). [Pg.167]

Abstract. This paper reviews the title article by Clemens Roothaan and the huge impact that his paper has had in modern chemistry. In his paper Roothaan converts the molecular Schodinger equation into a matrix equation by systematically introducing the linear combination of atomic orbitals-molecular orbital approximation and by invoking the variational principle. [Pg.59]

How is the number of molecular orbitals approximated by a linear combination of atomic orbitals related to the number of atomic orbitals used in the approximation ... [Pg.474]

In the case of ethylene the a framework is formed by the carbon sp -orbitals and the rr-bond is formed by the sideways overlap of the remaining two p-orbitals. The two 7r-orbitals have the same symmetry as the ir 2p and 7T 2p orbitals of a homonuclear diatomic molecule (Fig. 1.6), and the sequence of energy levels of these two orbitals is the same (Fig. 1.7). We need to know how such information may be deduced for ethylene and larger conjugated hydrocarbons. In most cases the information required does not provide a searching test of a molecular orbital approximation. Indeed for 7r-orbitals the information can usually be provided by the simple Huckel (1931) molecular orbital method (HMO) which uses the linear combination of atomic orbitals (LCAO), or even by the free electron model (FEM). These methods and the results they give are outlined in the remainder of this chapter. [Pg.16]

HMO theory is named after its developer, Erich Huckel (1896-1980), who published his theory in 1930 [9] partly in order to explain the unusual stability of benzene and other aromatic compounds. Given that digital computers had not yet been invented and that all Hiickel s calculations had to be done by hand, HMO theory necessarily includes many approximations. The first is that only the jr-molecular orbitals of the molecule are considered. This implies that the entire molecular structure is planar (because then a plane of symmetry separates the r-orbitals, which are antisymmetric with respect to this plane, from all others). It also means that only one atomic orbital must be considered for each atom in the r-system (the p-orbital that is antisymmetric with respect to the plane of the molecule) and none at all for atoms (such as hydrogen) that are not involved in the r-system. Huckel then used the technique known as linear combination of atomic orbitals (LCAO) to build these atomic orbitals up into molecular orbitals. This is illustrated in Figure 7-18 for ethylene. [Pg.376]

ITyperChem uses the Linear Combination of Atomic Orhilals-Molecular Orbital (LCAO-MO) approximation for all of itsah initio sem i-empirical melh ods. If rg, represen is a molecular orbital and... [Pg.42]

Highest occupied molecular orbital Intermediate neglect of differential overlap Linear combination of atomic orbitals Local density approximation Local spin density functional theory Lowest unoccupied molecular orbital Many-body perturbation theory Modified INDO version 3 Modified neglect of diatomic overlap Molecular orbital Moller-Plesset... [Pg.124]

Having the Slater atomic orbitals, the linear combination approximation to molecular orbitals, and the SCF method as applied to the Fock matrix, we are in a position to calculate properties of atoms and molecules ab initio, at the Hartree-Fock level of accuracy. Before doing that, however, we shall continue in the spirit of semiempirical calculations by postponing the ab initio method to Chapter 10 and invoking a rather sophisticated set of approximations and empirical substitutions... [Pg.277]

In the case of, the energy is wrong because the molecular orbital is not a linear combination of atomic orbitals, it is approximated by a linear combination of atomic orbitals. Use of scaled atomic orbitals... [Pg.306]

The quantum mechanics methods in HyperChem differ in how they approximate the Schrodinger equation and how they compute potential energy. The ab initio method expands molecular orbitals into a linear combination of atomic orbitals (LCAO) and does not introduce any further approximation. [Pg.34]

Configuration Interaction (or electron correlation) adds to the single determinant of the Hartree-Fock wave function a linear combination of determinants that play the role of atomic orbitals. This is similar to constructing a molecular orbital as a linear combination of atomic orbitals. Like the LCAO approximation. Cl calculations determine the weighting of each determinant to produce the lowest energy ground state (see SCFTechnique on page 43). [Pg.38]

To this point, the basic approximation is that the total wave function is a single Slater determinant and the resultant expression of the molecular orbitals is a linear combination of atomic orbital basis functions (MO-LCAO). In other words, an ab initio calculation can be initiated once a basis for the LCAO is chosen. Mathematically, any set of functions can be a basis for an ab initio calculation. However, there are two main th ings to be con sidered in the choice of the basis. First one desires to use the most efficient and accurate functions possible, so that the expansion (equation (49) on page 222), will require the fewest possible terms for an accurate representation of a molecular orbital. The second one is the speed of two-electron integral calculation. [Pg.252]

The coefficients indicate the contribution of each atomic orbital to the molecular orbital. This method of representing the molecular orbital wave function in terms of combinations of atomic orbital wave functions is known as the linear combination of atomic orbitals approximation (LCAO). The combination of atomic orbitals chosen is called the basis set. [Pg.24]

LCAO Approximation. Linear Combination of Atomic Orbitals approximation. Expresses the Molecular Orbitals by linear combinations of atom-centered functions (Atomic Orbitals). [Pg.282]

In order to obtain an approximate solution to eq. (1.9) we can take advantage of the fact that for large R and small rA, one basically deals with a hydrogen atom perturbed by a bare nucleus. This situation can be described by the hydrogen-like atomic orbital y100 located on atom A. Similarly, the case with large R and small rB can be described by y100 on atom B. Thus it is reasonable to choose a linear combination of the atomic orbitals f00 and f00 as our approximate wave function. Such a combination is called a molecular orbital (MO) and is written as... [Pg.5]

The first paper of the frontier-electron theory pointed out that the electrophilic aromatic substitution in aromatic hydrocarbons should take place at the position of the greatest density of electrons in the highest occupied (HO) molecular orbital (MO). The second paper disclosed that the nucleophilic replacement should occur at the carbon atom where the lowest unoccupied (LU) MO exhibited the maximum density of extension. These particular MO s were called "frontier MO s . In homolytic replacements, both HO and LU.were shown to serve as the frontier MO s. In these papers the "partial" density of 2 pn electron, in the HO (or LU) MO, at a certain carbon atom was simply interpreted by the square of the atomic orbital (AO) coefficient in these particular MO s which were represented by a linear combination (LC) of 2 pn AO s in the frame of the Huckel approximation. These partial densities were named frontier-electron densities . [Pg.11]

The VB and the MO methods are rooted in very different philosophies of describing molecules. Although at the outset each method leads to different approximate wave functions, when successive improvements are made the two ultimately converge to the same wave function. In both the VB and MO methods, an approximate molecular wave function is obtained by combining appropriate hydrogen-like orbitals on each of the atoms in the molecule. This is called the linear combination of atomic orbitals (LCAO) approximation. [Pg.71]

When the Hartree-Fock method is applied to molecules, molecular orbitals are used instead of atomic orbitals. To construct the molecular orbitals, one widely used approximation is LCAO (linear combinations of atomic orbitals). According to molecular orbital theory, the total wave function of the system is written as a combination of molecular orbitals, spin functions describing electrons in terms of spin j(a) or — j p). [Pg.5]

The most simple approach is the Hartree-Fock (HF) self-consistent field (SCF) approximation, in which the electronic wave function is expressed as an antisymmetrized product of one-electron functions. In this way, each electron is assumed to move in the average field of all other electrons. The one-electron functions, or spin orbitals, are taken as a product of a spatial function (molecular orbital) and a spin function. Molecular orbitals are constructed as a linear combination of atomic basis functions. The coefficients of this linear combination are obtained by solving iteratively the Roothaan equations. [Pg.3]

The simple orbital basis expansion method which is used in the implementation of most models of molecular electronic structure consists of expanding each R as a linear combination of determinants of a set of (usually) atom-centred functions of one or two standard forms. In particular most qualitative and semi-quantitative theories restrict the terms in this expansion to consist of the (approximate) occupied atomic orbitals of the constituent atoms of the molecule. There are two types of symmetry constraint implicit in this technique. [Pg.47]

An important characteristic of ab initio computational methodology is the ability to approach the exact description - that is, the focal point [11] - of the molecular electronic structure in a systematic manner. In the standard approach, approximate wavefunctions are constructed as linear combinations of antisymmetrized products (determinants) of one-electron functions, the molecular orbitals (MOs). The quality of the description then depends on the basis of atomic orbitals (AOs) in terms of which the MOs are expanded (the one-electron space), and on how linear combinations of determinants of these MOs are formed (the n-electron space). Within the one- and n-electron spaces, hierarchies exist of increasing flexibility and accuracy. To understand the requirements for accurate calculations of thermochemical data, we shall in this section consider the one- and n-electron hierarchies in some detail [12]. [Pg.2]

In the MO approach molecular orbitals are expressed as a linear combination of atomic orbitals (LCAO) atomic orbitals (AO), in return, are determined from the approximate numerical solution of the electronic Schrodinger equation for each of the parent atoms in the molecule. This is the reason why hydrogen-atom-like wavefunctions continue to be so important in quantum mechanics. Mathematically, MO-LCAO means that the wave-functions of the molecule containing N atoms can be expressed as... [Pg.106]


See other pages where Molecular orbital linear combination atomic orbitals approximation is mentioned: [Pg.114]    [Pg.197]    [Pg.268]    [Pg.339]    [Pg.27]    [Pg.33]    [Pg.38]    [Pg.177]    [Pg.183]    [Pg.5]    [Pg.175]    [Pg.922]    [Pg.195]    [Pg.30]    [Pg.141]    [Pg.38]    [Pg.85]    [Pg.37]    [Pg.393]    [Pg.64]    [Pg.110]    [Pg.6]    [Pg.402]    [Pg.154]    [Pg.7]    [Pg.26]   


SEARCH



Atomic combinations

Atomic orbital combinations

Atomic orbitals, combining

Atoms Combined

Atoms, combination

Linear approximation

Linear combination

Linear combination atomic orbitals

Linear molecular orbitals

Linearized approximation

Molecular approximations

Molecular orbital atomic orbitals

Molecular orbital linear combination

Molecular orbitals atoms

Orbital approximation

Orbital, atomic molecular

Orbitals approximation

© 2024 chempedia.info