Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mole functions

The claim of the authors of (123) that the electrochemical behaviour of Li in aqueous solutions of its hydroxide is unique, however, needs further examination. It has not yet been proved experimentally that Na or Ca do not form films in concentrated solutions, of the hydroxyl ion (OH ). NaOH solutions can be prepared in the so-called transition region between molten NaOH and its aqueous solutions, i.e. with compositions at which the mole function of water 0.2. The physico-chemical properties of the compositions in the transition region are quite different from those of dilute solutions of salts or hydroxides in water. [Pg.283]

Adsorption equilibria determine the thermodynamic limits of the specific amounts of adsorption (mol/g) of a pure gas or the components of a fluid mixture (gas or liquid) under a given set of conditions [pressure (P), temperature (T), and mole function (y or Xi) of component /] of the bulk fluid phase. The simplest way to describe adsorption equilibria of pure gas i is in the form of adsorption isotherms where the amount adsorbed (n ) is plotted as a function of gas pressure (P) at a constant temperature (P). The pure gas adsorption isotherms can have various shapes (Types I-V) by Brunauer classification depending on the porosity of the adsorbent (microporous, mesoporous, or nonpo-rous) and the system temperature (below or above the critical temperature of the adsorbate). However, the most common isotherm shape is Type I, which is depicted by most microporous adsorbents of practical use. These isotherms exhibit a linear section in the very low-pressure region (Henry s law region) where the amount adsorbed is proportional to the gas pressure [ n ) = KiP]. The proportionality constant is called... [Pg.28]

Figure 2. The experimental G (t) for copolymer 9-23 (23,400 M, 0.087 mole function 2-VN) in a 120,000 PMMA host. Also shovm are theoretical G (t) curves calculated using Equation 7 for a 23,400 PMMA chain with 20 naphthalenes. The best fit results in an of 37 A. This result is in close... Figure 2. The experimental G (t) for copolymer 9-23 (23,400 M, 0.087 mole function 2-VN) in a 120,000 PMMA host. Also shovm are theoretical G (t) curves calculated using Equation 7 for a 23,400 PMMA chain with 20 naphthalenes. The best fit results in an of 37 A. This result is in close...
The Xj(cor) become the corrected mole functions to use in tlie preceding equations to calculate the properties of wet or saturated gas. [Pg.144]

Similarly, representing the mole functions of unreacted M, and Mj in the monomer feed by fj and f2, then... [Pg.221]

Equation (1) is of little practical use unless the fuga-cities can be related to the experimentally accessible quantities X, y, T, and P, where x stands for the composition (expressed in mole fraction) of the liquid phase, y for the composition (also expressed in mole fraction) of the vapor phase, T for the absolute temperature, and P for the total pressure, assumed to be the same for both phases. The desired relationship between fugacities and experimentally accessible quantities is facilitated by two auxiliary functions which are given the symbols (f... [Pg.14]

Unfortunately, many commonly used methods for parameter estimation give only estimates for the parameters and no measures of their uncertainty. This is usually accomplished by calculation of the dependent variable at each experimental point, summation of the squared differences between the calculated and measured values, and adjustment of parameters to minimize this sum. Such methods routinely ignore errors in the measured independent variables. For example, in vapor-liquid equilibrium data reduction, errors in the liquid-phase mole fraction and temperature measurements are often assumed to be absent. The total pressure is calculated as a function of the estimated parameters, the measured temperature, and the measured liquid-phase mole fraction. [Pg.97]

The sum of the squared differences between calculated and measures pressures is minimized as a function of model parameters. This method, often called Barker s method (Barker, 1953), ignores information contained in vapor-phase mole fraction measurements such information is normally only used for consistency tests, as discussed by Van Ness et al. (1973). Nevertheless, when high-quality experimental data are available. Barker s method often gives excellent results (Abbott and Van Ness, 1975). [Pg.97]

For liquid-liquid separations, the basic Newton-Raphson iteration for a is converged for equilibrium ratios (K ) determined at the previous composition estimate. (It helps, and costs very little, to converge this iteration quite tightly.) Then, using new compositions from this converged inner iteration loop, new values for equilibrium ratios are obtained. This procedure is applied directly for the first three iterations of composition. If convergence has not occurred after three iterations, the mole fractions of all components in both phases are accelerated linearly with the deviation function... [Pg.125]

These initial estimates are used in the iteration function. Equation (37), to obtain values of the 2 s that do not change significantly from one iteration to the next. These true mole fractions, with Equation (3-13), yield the desired fugacity... [Pg.135]

A step-limited Newton-Raphson iteration, applied to the Rachford-Rice objective function, is used to solve for A, the vapor to feed mole ratio, for an isothermal flash. For an adiabatic flash, an enthalpy balance is included in a two-dimensional Newton-Raphson iteration to yield both A and T. Details are given in Chapter 7. [Pg.319]

The following data (for 25°C) were obtained at the pzc for the Hg-aqueous NaF interface. Estimate and plot it as a function of the mole fraction of salt in solution. In the table,/ is mean activity coefficient such that a = f m , where m is mean molality. [Pg.216]

Metals A and B form an alloy or solid solution. To take a hypothetical case, suppose that the structure is simple cubic, so that each interior atom has six nearest neighbors and each surface atom has five. A particular alloy has a bulk mole fraction XA = 0.50, the side of the unit cell is 4.0 A, and the energies of vaporization Ea and Eb are 30 and 35 kcal/mol for the respective pure metals. The A—A bond energy is aa and the B—B bond energy is bb assume that ab = j( aa + bb)- Calculate the surface energy as a function of surface composition. What should the surface composition be at 0 K In what direction should it change on heaf)pg, and why ... [Pg.286]

These concluding chapters deal with various aspects of a very important type of situation, namely, that in which some adsorbate species is distributed between a solid phase and a gaseous one. From the phenomenological point of view, one observes, on mechanically separating the solid and gas phases, that there is a certain distribution of the adsorbate between them. This may be expressed, for example, as ria, the moles adsorbed per gram of solid versus the pressure P. The distribution, in general, is temperature dependent, so the complete empirical description would be in terms of an adsorption function ria = f(P, T). [Pg.571]

Plotting the left side of Eq. (3-22) as a function of gives a curve with as the slope and E° as the intercept. Ionic interference causes this function to deviate from lineality at m 0, but the limiting (ideal) slope and intercept are approached as OT 0. Table 3-1 gives values of the left side of Eq. (3-22) as a function of The eoneentration axis is given as in the corresponding Fig. 3-1 beeause there are two ions present for each mole of a 1 -1 electrolyte and the concentration variable for one ion is simply the square root of the concentration of both ions taken together. [Pg.67]

Plot the calculated first IPs as a function of the atomic number Z for the elements from H to Ne in the atomic table. The plot has a characteristic shape that should be familiar from earlier courses. These plots are frequently given in the experimental units of electron volts (eV hartrees x 27.21 = eV) or kilojoules per mole (kJ mol hartrees x 2625 = kJmol ). Write a paragraph or two in your project report explaining why the graph of IP vs. Z appears as it does. [Pg.242]

The most commonly used semiempirical for describing PES s is the diatomics-in-molecules (DIM) method. This method uses a Hamiltonian with parameters for describing atomic and diatomic fragments within a molecule. The functional form, which is covered in detail by Tully, allows it to be parameterized from either ah initio calculations or spectroscopic results. The parameters must be fitted carefully in order for the method to give a reasonable description of the entire PES. Most cases where DIM yielded completely unreasonable results can be attributed to a poor fitting of parameters. Other semiempirical methods for describing the PES, which are discussed in the reviews below, are LEPS, hyperbolic map functions, the method of Agmon and Levine, and the mole-cules-in-molecules (MIM) method. [Pg.177]

The heat capacity of thiazole was determined by adiabatic calorimetry from 5 to 340 K by Goursot and Westrum (295,296). A glass-type transition occurs between 145 and 175°K. Melting occurs at 239.53°K (-33-62°C) with an enthalpy increment of 2292 cal mole and an entropy increment of 9-57 cal mole °K . Table 1-44 summarizes the variations as a function of temperature of the most important thermodynamic properties of thiazole molar heat capacity Cp, standard entropy S°, and Gibbs function - G°-H" )IT. [Pg.86]

The properties that make polyethylene so useful come from its alkane like struc ture Except for the ends of the chain which make up only a tiny portion of the mole cule polyethylene has no functional groups so is almost completely inert to most sub stances with which it comes m contact... [Pg.268]

Example 13 The following data were recorded for the potential E of an electrode, measured against the saturated calomel electrode, as a function of concentration C (moles liter ). [Pg.208]

The copolymer composition equation relates the r s to either the ratio [Eq. (7.15)] or the mole fraction [Eq. (7.18)] of the monomers in the feedstock and repeat units in the copolymer. To use this equation to evaluate rj and V2, the composition of a copolymer resulting from a feedstock of known composition must be measured. The composition of the feedstock itself must be known also, but we assume this poses no problems. The copolymer specimen must be obtained by proper sampling procedures, and purified of extraneous materials. Remember that monomers, initiators, and possibly solvents are involved in these reactions also, even though we have been focusing attention on the copolymer alone. The proportions of the two kinds of repeat unit in the copolymer is then determined by either chemical or physical methods. Elemental analysis has been the chemical method most widely used, although analysis for functional groups is also employed. [Pg.457]

Figure 7.8 Mole fractions styrene (Mj) and methyl methacrylate (M2) in feedstock (f) and copolymers (F) as a function of the extent of polymerization. Average copolymer compositions are also shown. [From V. E. Meyer and R. K. S. Chan, Polym. Prepr. 8 209(1967), used with permission.]... Figure 7.8 Mole fractions styrene (Mj) and methyl methacrylate (M2) in feedstock (f) and copolymers (F) as a function of the extent of polymerization. Average copolymer compositions are also shown. [From V. E. Meyer and R. K. S. Chan, Polym. Prepr. 8 209(1967), used with permission.]...
Figure 8.1 The entropy of mixing (in units of R) as a function of mole fraction solute for ideal mixing and for the Flory-Huggins lattice model with n = 50, 100, and 500. Values are calculated in Example 8.1. Figure 8.1 The entropy of mixing (in units of R) as a function of mole fraction solute for ideal mixing and for the Flory-Huggins lattice model with n = 50, 100, and 500. Values are calculated in Example 8.1.
Eats and oils from a number of animal and vegetable sources are the feedstocks for the manufacture of natural higher alcohols. These materials consist of triglycerides glycerol esterified with three moles of a fatty acid. The alcohol is manufactured by reduction of the fatty acid functional group. A small amount of natural alcohol is also obtained commercially by saponification of natural wax esters of the higher alcohols, such as wool grease. [Pg.446]


See other pages where Mole functions is mentioned: [Pg.326]    [Pg.381]    [Pg.172]    [Pg.270]    [Pg.410]    [Pg.245]    [Pg.172]    [Pg.326]    [Pg.381]    [Pg.172]    [Pg.270]    [Pg.410]    [Pg.245]    [Pg.172]    [Pg.15]    [Pg.885]    [Pg.2598]    [Pg.204]    [Pg.202]    [Pg.457]    [Pg.146]    [Pg.99]    [Pg.87]    [Pg.1061]    [Pg.1287]    [Pg.170]    [Pg.406]    [Pg.68]    [Pg.27]    [Pg.333]    [Pg.486]    [Pg.254]   
See also in sourсe #XX -- [ Pg.111 , Pg.112 , Pg.113 ]




SEARCH



Mole fractions, as function

© 2024 chempedia.info