Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modeling SHEDS model

The factory is modeled as a two-zone network with door, horiztmtally pivoted windows, and roof shed windows as airflow elements. The extract tan and the duct and hood are modeled as additional airflow elements. Wind pressure coefficient data are taken from literature for a simple rectangular buihl-ing shape surrounded by buildings of equal height. [Pg.1091]

Nothing is known about the identity of the iron species responsible for dehydrogenation of the substrate. Iron-oxo species such as FeIV=0 or Fem-OOH are postulated as the oxidants in most heme or non-heme iron oxygenases. It has to be considered that any mechanistic model proposed must account not only for the observed stereochemistry but also for the lack of hydroxylation activity and its inability to convert the olefinic substrate. Furthermore, no HppE sequence homo-logue is to be found in protein databases. Further studies should shed more light on the mechanism with which this unique enzyme operates. [Pg.389]

The data reported in Table 3 for the 2-butenylborations of 2-(dibenzylamino)propanal shed additional light on this transition state model. The ( )-2-butenylboration of 2-(dibenzyl-amino)propanal evidently proceeds preferentially (90%) by way of transition state 9, suggesting that the bulky dibenzylamino substituent destabilizes transition state 8 (X = NBn2 > CH3). On the other hand, the (Z)-2-butenylboration of 2-(dibenzylamino)propanal is relatively non-selective, compared to the excellent selectivity realized in the (Z)-allylborations of a-chloro- or x-alkoxy-substituted chiral aldehydes. This result suggests that an increase in the steric requirement of X destabilizes transition state 11 such that significantly greater amounts of product are obtained from transition state 10. [Pg.287]

The modeling problem can only be approached intelligently after one knows the implications of the models that can be analyzed. In the following sections, we analyze simple classes of models for sources and channels. The results of that analysis give some indication of the sensitivity of communication system performance to small changes in the model this in turn sheds some light on the problem of choosing models. The simplified models of sources and channels that are analyzed in most of this chapter are now described in detail. [Pg.193]

An alternative stream came from the valence bond (VB) theory. Ovchinnikov judged the ground-state spin for the alternant diradicals by half the difference between the number of starred and unstarred ir-sites, i.e., S = (n -n)l2 [72]. It is the simplest way to predict the spin preference of ground states just on the basis of the molecular graph theory, and in many cases its results are parallel to those obtained from the NBMO analysis and from the sophisticated MO or DFT (density functional theory) calculations. However, this simple VB rule cannot be applied to the non-alternate diradicals. The exact solutions of semi-empirical VB, Hubbard, and PPP models shed light on the nature of spin correlation [37, 73-77]. [Pg.242]

Reactivity studies of organic ligands with mixed-metal clusters have been utilized in an attempt to shed light on the fundamental steps that occur in heterogeneous catalysis (Table VIII), although the correspondence between cluster chemistry and surface-adsorbate interactions is often poor. While some of these studies have been mentioned in Section ll.D., it is useful to revisit them in the context of the catalytic process for which they are models. Shapley and co-workers have examined the solution chemistry of tungsten-iridium clusters in an effort to understand hydrogenolysis of butane. The reaction of excess diphenylacetylene with... [Pg.106]

To shed more light on this, you might try to generahse all findings. You could develop a model concept of car use by humans, based on apparent traffic rules. [Pg.129]

In the recent past much ejperimental and theoretical effort has been undertaken to understand the microsoopic steps of heterogeneous surface reactions. Ihe main problem oonsists of evaluating the total energy of the reacting coponents (including tiie surface atoms ) as a function of all nuclear coordinates at any reaction time. The solution of this problem is extremely difficult. Detailed studies with model systems, however, can shed same light ipon the various steps of the interaction pattern. [Pg.222]

To shed hght on the origin of the enhanced ORR activity, Xu and co-workers performed extensive DFT calculations to investigate the reactivity of the Pt skin [Xu et al., 2004], in particular how oxygen interacts in vacuum with the ordered PtsCo alloy and with a monolayer of Pt formed on the alloy as a model for Pt skin. Figure 9.10 identifies the various adsorption sites for O and O2. Experiments have shown that up to four layers of Pt could sustain a 2.5% compressive strain without creating any surface... [Pg.284]

Plasma analysis is essential in order to compare plasma parameters with simulated or calculated parameters. From the optical emission of the plasma one may infer pathways of chemical reactions in the plasma. Electrical measurements with electrostatic probes are able to verify the electrical properties of the plasma. Further, mass spectrometry on neutrals, radicals, and ions, either present in or coming out of the plasma, will elucidate even more of the chemistry involved, and will shed at least some light on the relation between plasma and material properties. Together with ellipsometry experiments, all these plasma analysis techniques provide a basis for the model of deposition. [Pg.28]

Siebenga, J. J., Beersma, M. F., Vennema, H., van Biezen, P., Hartwig, N. J., and Koopmans, M. (2008). High prevalence of prolonged norovirus shedding and illness among hospitalized patients A model for in vivo molecular evolution. J. Infect. Dis. 198,994—1001. [Pg.36]

In this paper a method [11], which allows for an a priori BSSE removal at the SCF level, is for the first time applied to interaction densities studies. This computational protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interactions) to highlight its relationship to the standard Roothaan equations and its special usefulness in the evaluation of molecular interactions, has recently been successfully used [11-13] for evaluating Eint in a number of intermolecular complexes. Comparison of standard SCF interaction densities with those obtained from the SCF-MI approach should shed light on the effects of BSSE removal. Such effects may then be compared with those deriving from the introduction of Coulomb correlation corrections. To this aim, we adopt a variational perturbative valence bond (VB) approach that uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture. Finally, no bias should be introduced in our study by the particular approach chosen to analyze the observed charge density rearrangements. Therefore, not a model but a theory which is firmly rooted in Quantum Mechanics, applied directly to the electron density p and giving quantitative answers, is to be adopted. Bader s Quantum Theory of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a theory has also been recently applied to molecular crystals as a valid tool to rationalize and quantitatively detect crystal field effects on the molecular densities [16-18]. [Pg.105]

Photoelectrochemical experiments on the pyrite/H2S system, as well as theoretical considerations, led Tributsch et al. (2003) to the conclusion that CO2 fixation at pyrite probably could not have led to the syntheses proposed by Wachtershauser. The reaction mechanism involved in such reactions is likely to be much more complex than had previously been assumed. The Berlin group supports the objection of Schoonen et al. (1999) that, apart from other points, the electron transfer from pyrrhotine to CO2 is hindered by an activation energy which is too high. There is, thus, no lack of different opinions on the model of chemoautotrophic biogenesis hopefully future studies will shed more light on the situation ... [Pg.202]


See other pages where Modeling SHEDS model is mentioned: [Pg.298]    [Pg.672]    [Pg.674]    [Pg.3]    [Pg.69]    [Pg.549]    [Pg.246]    [Pg.158]    [Pg.605]    [Pg.54]    [Pg.755]    [Pg.397]    [Pg.155]    [Pg.161]    [Pg.122]    [Pg.170]    [Pg.63]    [Pg.522]    [Pg.287]    [Pg.454]    [Pg.437]    [Pg.306]    [Pg.186]    [Pg.243]    [Pg.221]    [Pg.31]    [Pg.73]    [Pg.80]    [Pg.80]    [Pg.159]    [Pg.173]    [Pg.517]    [Pg.160]    [Pg.240]   
See also in sourсe #XX -- [ Pg.143 , Pg.150 ]




SEARCH



SHED model, discussion

Sheds

© 2024 chempedia.info