Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical mechanical model

Stell G, Patey G N and H0ye J S 1981 Dielectric constant of fluid models statistical mechanical theory and its quantitative implementation Adv. Chem. Phys. 48 183... [Pg.558]

G. Stell, G. N. Patey, and J. S. Hdye. Dielectric constants of fluid models Statistical mechanical theory and its quantitative implementation. Adv. Chem. Phys., 43 183-328 (1981). [Pg.470]

DIELECTRIC CONSTANTS OF FLUID MODELS STATISTICAL MECHANICAL THEORY AND ITS QUANTITATIVE IMPLEMENTATION... [Pg.183]

Hamiltonian model Statistical mechanical model based on a Hamiltonian. [Pg.78]

Another statistical mechanical approach makes use of the radial distribution function g(r), which gives the probability of finding a molecule at a distance r from a given one. This function may be obtained experimentally from x-ray or neutron scattering on a liquid or from computer simulation or statistical mechanical theories for model potential energies [56]. Kirkwood and Buff [38] showed that for a given potential function, U(r)... [Pg.62]

There is, of course, a mass of rather direct evidence on orientation at the liquid-vapor interface, much of which is at least implicit in this chapter and in Chapter IV. The methods of statistical mechanics are applicable to the calculation of surface orientation of assymmetric molecules, usually by introducing an angular dependence to the inter-molecular potential function (see Refs. 67, 68, 77 as examples). Widom has applied a mean-held approximation to a lattice model to predict the tendency of AB molecules to adsorb and orient perpendicular to the interface between phases of AA and BB [78]. In the case of water, a molecular dynamics calculation concluded that the surface dipole density corresponded to a tendency for surface-OH groups to point toward the vapor phase [79]. [Pg.65]

On compression, a gaseous phase may condense to a liquid-expanded, L phase via a first-order transition. This transition is difficult to study experimentally because of the small film pressures involved and the need to avoid any impurities [76,193]. There is ample evidence that the transition is clearly first-order there are discontinuities in v-a plots, a latent heat of vaporization associated with the transition and two coexisting phases can be seen. Also, fluctuations in the surface potential [194] in the two phase region indicate two-phase coexistence. The general situation is reminiscent of three-dimensional vapor-liquid condensation and can be treated by the two-dimensional van der Waals equation (Eq. Ill-104) [195] or statistical mechanical models [191]. [Pg.132]

Another important accomplislnnent of the free electron model concerns tire heat capacity of a metal. At low temperatures, the heat capacity of a metal goes linearly with the temperature and vanishes at absolute zero. This behaviour is in contrast with classical statistical mechanics. According to classical theories, the equipartition theory predicts that a free particle should have a heat capacity of where is the Boltzmann constant. An ideal gas has a heat capacity consistent with tliis value. The electrical conductivity of a metal suggests that the conduction electrons behave like free particles and might also have a heat capacity of 3/fg,... [Pg.128]

Our discussion shows that the Ising model, lattice gas and binary alloy are related and present one and the same statistical mechanical problem. The solution to one provides, by means of the transcription tables, the solution to the others. Flistorically, however, they were developed independently before the analogy between the models was recognized. [Pg.529]

Cummings P T and Stell G 1984 Statistical mechanical models of chemical reactions analytic solution of models of A + S AS in the Percus-Yevick approximation Mol. Phys. 51 253... [Pg.554]

The experimental data and arguments by Trassatti [25] show that at the PZC, the water dipole contribution to the potential drop across the interface is relatively small, varying from about 0 V for An to about 0.2 V for In and Cd. For transition metals, values as high as 0.4 V are suggested. The basic idea of water clusters on the electrode surface dissociating as the electric field is increased has also been supported by in situ Fourier transfomr infrared (FTIR) studies [26], and this model also underlies more recent statistical mechanical studies [27]. [Pg.594]

No system is exactly unifomi even a crystal lattice will have fluctuations in density, and even the Ising model must pemiit fluctuations in the configuration of spins around a given spin. Moreover, even the classical treatment allows for fluctuations the statistical mechanics of the grand canonical ensemble yields an exact relation between the isothemial compressibility K j,and the number of molecules Ain volume V ... [Pg.647]

As reactants transfonn to products in a chemical reaction, reactant bonds are broken and refomied for the products. Different theoretical models are used to describe this process ranging from time-dependent classical or quantum dynamics [1,2], in which the motions of individual atoms are propagated, to models based on the postidates of statistical mechanics [3], The validity of the latter models depends on whether statistical mechanical treatments represent the actual nature of the atomic motions during the chemical reaction. Such a statistical mechanical description has been widely used in imimolecular kinetics [4] and appears to be an accurate model for many reactions. It is particularly instructive to discuss statistical models for unimolecular reactions, since the model may be fomuilated at the elementary microcanonical level and then averaged to obtain the canonical model. [Pg.1006]

Because this problem is complex several avenues of attack have been devised in the last fifteen years. A combination of experimental developments (protein engineering, advances in x-ray and nuclear magnetic resonance (NMR), various time-resolved spectroscopies, single molecule manipulation methods) and theoretical approaches (use of statistical mechanics, different computational strategies, use of simple models) [5, 6 and 7] has led to a greater understanding of how polypeptide chains reach the native confonnation. [Pg.2642]

Colloidal particles can be seen as large, model atoms . In what follows we assume that particles with a typical radius <3 = lOO nm are studied, about lO times as large as atoms. Usually, the solvent is considered to be a homogeneous medium, characterized by bulk properties such as the density p and dielectric constant t. A full statistical mechanical description of the system would involve all colloid and solvent degrees of freedom, which tend to be intractable. Instead, the potential of mean force, V, is used, in which the interactions between colloidal particles are averaged over... [Pg.2667]

An alternative way of deriving the BET equation is to express the problem in statistical-mechanical rather than kinetic terms. Adsorption is explicitly assumed to be localized the surface is regarded as an array of identical adsorption sites, and each of these sites is assumed to form the base of a stack of sites extending out from the surface each stack is treated as a separate system, i.e. the occupancy of any site is independent of the occupancy of sites in neighbouring stacks—a condition which corresponds to the neglect of lateral interactions in the BET model. The further postulate that in any stack the site in the ith layer can be occupied only if all the underlying sites are already occupied, corresponds to the BET picture in which condensation of molecules to form the ith layer can only take place on to molecules which are present in the (i — l)th layer. [Pg.45]

The concept of corresponding states was based on kinetic molecular theory, which describes molecules as discrete, rapidly moving particles that together constitute a fluid or soHd. Therefore, the theory of corresponding states was a macroscopic concept based on empirical observations. In 1939, the theory of corresponding states was derived from an inverse sixth power molecular potential model (74). Four basic assumptions were made (/) classical statistical mechanics apply, (2) the molecules must be spherical either by actual shape or by virtue of rapid and free rotation, (3) the intramolecular vibrations are considered identical for molecules in either the gas or Hquid phases, and (4) the potential energy of a coUection of molecules is a function of only the various intermolecular distances. [Pg.239]

Thermal Properties at Low Temperatures For sohds, the Debye model developed with the aid of statistical mechanics and quantum theoiy gives a satisfactoiy representation of the specific heat with temperature. Procedures for calculating values of d, ihe Debye characteristic temperature, using either elastic constants, the compressibility, the melting point, or the temperature dependence of the expansion coefficient are outlined by Barron (Cryogenic Systems, 2d ed., Oxford University Press, 1985, pp 24-29). [Pg.1127]

In this chapter we provide an introductory overview of the imphcit solvent models commonly used in biomolecular simulations. A number of questions concerning the formulation and development of imphcit solvent models are addressed. In Section II, we begin by providing a rigorous fonmilation of imphcit solvent from statistical mechanics. In addition, the fundamental concept of the potential of mean force (PMF) is introduced. In Section III, a decomposition of the PMF in terms of nonpolar and electrostatic contributions is elaborated. Owing to its importance in biophysics. Section IV is devoted entirely to classical continuum electrostatics. For the sake of completeness, other computational... [Pg.134]

It is possible to go beyond the SASA/PB approximation and develop better approximations to current implicit solvent representations with sophisticated statistical mechanical models based on distribution functions or integral equations (see Section V.A). An alternative intermediate approach consists in including a small number of explicit solvent molecules near the solute while the influence of the remain bulk solvent molecules is taken into account implicitly (see Section V.B). On the other hand, in some cases it is necessary to use a treatment that is markedly simpler than SASA/PB to carry out extensive conformational searches. In such situations, it possible to use empirical models that describe the entire solvation free energy on the basis of the SASA (see Section V.C). An even simpler class of approximations consists in using infonnation-based potentials constructed to mimic and reproduce the statistical trends observed in macromolecular structures (see Section V.D). Although the microscopic basis of these approximations is not yet formally linked to a statistical mechanical formulation of implicit solvent, full SASA models and empirical information-based potentials may be very effective for particular problems. [Pg.148]


See other pages where Statistical mechanical model is mentioned: [Pg.55]    [Pg.55]    [Pg.61]    [Pg.67]    [Pg.132]    [Pg.328]    [Pg.550]    [Pg.730]    [Pg.1079]    [Pg.2364]    [Pg.2557]    [Pg.2644]    [Pg.317]    [Pg.318]    [Pg.534]    [Pg.162]    [Pg.515]    [Pg.1504]    [Pg.14]    [Pg.139]    [Pg.148]    [Pg.375]    [Pg.418]   
See also in sourсe #XX -- [ Pg.140 ]

See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Ising model statistical mechanics

Mechanical models

Mechanics Model

Mechanics Modeling

Mechanism model

Mechanisms modeling

Modeling Statistics

Outer statistical mechanical model

Quantum statistical mechanical models

Reaction mechanisms statistical kinetic models

Statistical Mechanics Models for Materials

Statistical mechanical modeling of chemical

Statistical mechanical modeling of chemical reactions

Statistical mechanics Lennard-Jones interaction model

Statistical mechanics models

Statistical mechanics models

Statistical mechanics phenomenological modeling

Statistical mechanics-based models

Statistical modeling

Statistical models

Statistical-mechanics-based equation model behavior

Surface Complexation Models Statistical Mechanics

The Quantum Statistical Mechanics of a Simple Model System

© 2024 chempedia.info