Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model chemistry Hartree-Fock

Each cell in the chart defines a model chemistry. The columns correspond to differcni theoretical methods and the rows to different basis sets. The level of correlation increases as you move to the right across any row, with the Hartree-Fock method jI the extreme left (including no correlation), and the Full Configuration Interaction method at the right (which fuUy accounts for electron correlation). In general, computational cost and accuracy increase as you move to the right as well. The relative costs of different model chemistries for various job types is discussed in... [Pg.94]

CBS models typically include a Hartree-Fock calculation with a very large basis set, an MP2 calculation with a medium-sized basis set (and this is also the level where the CBS extrapolation is performed), and one or more higher-level calculations with a medium-to-modest basis set. The following table outlines the components of the CBS-4 and CBS-Q model chemistries ... [Pg.155]

Like Hartree-Fock theory, Cl-Singles is an inexpensive method that can be applied to large systems. When paired with a basis set, it also may be used to define excited state model chemistries whose results may be compared across the full range of practical systems. [Pg.213]

We ran an SCRF single point energy calculation for gauche dichloroethane conformers in cyclohexane (e=2.0), using the Onsager model at the Hartree-Fock and MP2 levels of theory (flfl=3.65) and using the IPCM model at the B3LYP level. The 6-31+G(d) basis set was used for all jobs. We also ran gas phase calculations for both conformations at the same model chemistries, and an IPCM calculation for the trans conformation (SCRF=Dipole calculations are not necessary for the trans conformation since it has no dipole moment). [Pg.240]

Chapter 6, Selecting an Appropriate Theoretical Method, discusses the model chemistry concept introduced in Chapter 1 in detail. It covers the strengths, computational cost and limitations of a variety of popular methods, beginning with semi-empirical models and continuing through Hartree-Fock, Density Functional Theory, and electron correlation methods. [Pg.317]

Since the early days of quantum mechanics, the wave function theory has proven to be very successful in describing many different quantum processes and phenomena. However, in many problems of quantum chemistry and solid-state physics, where the dimensionality of the systems studied is relatively high, ab initio calculations of the structure of atoms, molecules, clusters, and crystals, and their interactions are very often prohibitive. Hence, alternative formulations based on the direct use of the probability density, gathered under what is generally known as the density matrix theory [1], were also developed since the very beginning of the new mechanics. The independent electron approximation or Thomas-Fermi model, and the Hartree and Hartree-Fock approaches are former statistical models developed in that direction [2]. These models can be considered direct predecessors of the more recent density functional theory (DFT) [3], whose principles were established by Hohenberg,... [Pg.105]

This mechanistic question is one of the examples of the success of density functional theory methods in organometallic chemistry. Earlier work on the reaction mechanism could not discriminate between the two alternatives. Analysis of the different orbitals based on extended Hiickel calculations came to the result that the [3+2] pathway is more likely, but could not exclude the possibility of a [2+2] pathway [13]. Similar conclusions where obtained from the results of Hartree-Fock calculations in combination with QCISD(T) single point calculations [21], Attempts to use Ru04 as a model for osmium tetraoxide indicated that the formation of an oxetane is less favorable compared to the [3+2] pathway, but still possible [22, 23],... [Pg.256]

The various methods used in quantum chemistry make it possible to compute equilibrium intermolecular distances, to describe intermolecular forces and chemical reactions too. The usual way to calculate these properties is based on the independent particle model this is the Hartree-Fock method. The expansion of one-electron wave-functions (molecular orbitals) in practice requires technical work on computers. It was believed for years and years that ab initio computations will become a routine task even for large molecules. In spite of the enormous increase and development in computer technique, however, this expectation has not been fulfilled. The treatment of large, extended molecular systems still needs special theoretical background. In other words, some approximations should be used in the methods which describe the properties of molecules of large size and/or interacting systems. The further approximations are to be chosen carefully this caution is especially important when going beyond the HF level. The inclusion of the electron correlation in the calculations in a convenient way is still one of the most significant tasks of quantum chemistry. [Pg.41]

Orbital interaction theory forms a comprehensive model for examining the structures and kinetic and thermodynamic stabilities of molecules. It is not intended to be, nor can it be, a quantitative model. However, it can function effectively in aiding understanding of the fundamental processes in chemistry, and it can be applied in most instances without the use of a computer. The variation known as perturbative molecular orbital (PMO) theory was originally developed from the point of view of weak interactions [4, 5]. However, the interaction of orbitals is more transparently developed, and the relationship to quantitative MO theories is more easily seen by straightforward solution of the Hiickel (independent electron) equations. From this point of view, the theoretical foundations lie in Hartree-Fock theory, described verbally and pictorially in Chapter 2 [57] and more rigorously in Appendix A. [Pg.34]

The second part of the book re-examines the traditional concepts of chemistry against the background of physical theories adapted for chemistry. An alternative theory is formulated from the recognition that the processes of chemistry happen in crowded environments that promote activated states of matter. Compressive activation, modelled by the methods of Hartree-Fock-Slater atomic structure simulation, leads to an understanding of elemental periodicity, the electronegativity function and covalence as a manifestation of space-time structure and the golden ratio. [Pg.328]

Chemistry is primarily concerned not with the properties of single molecules but with periodic trends, homologous series and the like. It is, therefore, important that any method which we apply to the problem of molecular electronic structure depends linearly on the number of electrons in the system being studied. Meaningful comparisons of atoms and molecules of different sizes are then possible. This property has been termed size-consistency1-2. Independent electron models, such as the widely used Hartree-Fock approximation, provide a size-consistent theory of atomic and molecular structure. [Pg.1]


See other pages where Model chemistry Hartree-Fock is mentioned: [Pg.296]    [Pg.170]    [Pg.110]    [Pg.576]    [Pg.203]    [Pg.690]    [Pg.94]    [Pg.220]    [Pg.229]    [Pg.381]    [Pg.87]    [Pg.175]    [Pg.180]    [Pg.3]    [Pg.4]    [Pg.134]    [Pg.337]    [Pg.833]    [Pg.133]    [Pg.131]    [Pg.110]    [Pg.179]    [Pg.152]    [Pg.5]    [Pg.6]    [Pg.75]    [Pg.304]    [Pg.579]    [Pg.188]    [Pg.539]    [Pg.550]    [Pg.108]    [Pg.1]    [Pg.628]    [Pg.90]    [Pg.429]    [Pg.135]   
See also in sourсe #XX -- [ Pg.13 , Pg.41 ]




SEARCH



Hartree model

Hartree-Fock model

Model chemistry

Modelling chemistry

© 2024 chempedia.info