Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited states, defined

Very recently, the electronic density and its derivatives at the origin have been used [102] to obtain very accurate energy values of the spherically confined model systems. For the ground or excited state defined by the angular quantum number l we define... [Pg.63]

Check the mutual orthogonality of the singly excited states defined by Eq. (12.14). [Pg.97]

C3.4.13)). The dimer has a common ground state and excitation may temrinate in eitlier tire or excited state (see tire solid arrows in figure C3.4.3). The transition dipole moments of tliese transitions are defined as ... [Pg.3024]

Before moving furtlier to tire multimer case we should outline one furtlier significant feature of a dimer. Dimer excited states have a well defined rotational strengtli [33, 34] ... [Pg.3025]

Techniques have been developed within the CASSCF method to characterize the critical points on the excited-state PES. Analytic first and second derivatives mean that minima and saddle points can be located using traditional energy optimization procedures. More importantly, intersections can also be located using constrained minimization [42,43]. Of particular interest for the mechanism of a reaction is the minimum energy path (MEP), defined as the line followed by a classical particle with zero kinetic energy [44-46]. Such paths can be calculated using intrinsic reaction coordinate (IRC) techniques... [Pg.253]

The two coordinates defined for H4 apply also for the H3 system, and the conical intersection in both is the most symmetric structure possible by the combination of the three equivalent structures An equilateral triangle for H3 and a perfect tetrahedron for H4. These sbnctures lie on the ground-state potential surface, at the point connecting it with the excited state. This result is generalized in the Section. IV. [Pg.340]

Reference [73] presents the first line-integral study between two excited states, namely, between the second and the third states in this series of states. Here, like before, the calculations are done for a fixed value of ri (results are reported for ri = 1.251 A) but in contrast to the previous study the origin of the system of coordinates is located at the point of this particulai conical intersection, that is, the (2,3) conical intersection. Accordingly, the two polar coordinates (adiabatic coupling term i.e. X(p (— C,2 c>(,2/ )) again employing chain rules for the transformation... [Pg.706]

To define the state yon want to calculate, you must specify the m u Itiplicity. A system with an even ii n m ber of electron s n sn ally has a closed-shell ground state with a multiplicity of I (a singlet). Asystem with an odd niim her of electrons (free radical) nsnally has a multiplicity of 2 (a doublet). The first excited state of a system with an even ii nm ber of electron s usually has a m n Itiplicity of 3 (a triplet). The states of a given m iiltiplicity have a spectrum of states —the lowest state of the given multiplicity, the next lowest state of the given multiplicity, and so on. [Pg.218]

The disadvantage of molecular mechanics is that there are many chemical properties that are not even defined within the method, such as electronic excited states. Since chemical bonding tenns are explicitly included in the force field, it is not possible without some sort of mathematical manipulation to examine reactions in which bonds are formed or broken. In order to work with extremely large and complicated systems, molecular mechanics software packages often have powerful and easy-to-use graphic interfaces. Because of this, mechanics is sometimes used because it is an easy, but not necessarily a good, way to describe a system. [Pg.57]

Catalysis (qv) refers to a process by which a substance (the catalyst) accelerates an otherwise thermodynamically favored but kiaeticahy slow reaction and the catalyst is fully regenerated at the end of each catalytic cycle (1). When photons are also impHcated in the process, photocatalysis is defined without the implication of some special or specific mechanism as the acceleration of the prate of a photoreaction by the presence of a catalyst. The catalyst may accelerate the photoreaction by interaction with a substrate either in its ground state or in its excited state and/or with the primary photoproduct, depending on the mechanism of the photoreaction (2). Therefore, the nondescriptive term photocatalysis is a general label to indicate that light and some substance, the catalyst or the initiator, are necessary entities to influence a reaction (3,4). The process must be shown to be truly catalytic by some acceptable and attainable parameter. Reaction 1, in which the titanium dioxide serves as a catalyst, may be taken as both a photocatalytic oxidation and a photocatalytic dehydrogenation (5). [Pg.398]

Another important concept in the discussion of photochromic systems is fatigue. Fatigue is defined as a loss in photochromic activity as a result of the presence of side reactions that deplete the concentration of A and/or B, or lead to the formation of products that inhibit the photochemical formation of B. The inhibition can result from quenching of the excited state of A or screening of active light. Fatigue, therefore, is caused by the absence of total reversibihty within the photochromic reaction (eq. 2). [Pg.161]

Like Hartree-Fock theory, Cl-Singles is an inexpensive method that can be applied to large systems. When paired with a basis set, it also may be used to define excited state model chemistries whose results may be compared across the full range of practical systems. [Pg.213]

The coefficients indicate the composition of the electronic state in terms of a linear combination of the various electronic configurations defined earlier in the output. Here is an example from a 4,4 CAS showing the first two excited state configurations ... [Pg.234]

In principle, one can extract from G(ti)) the complete series of the primary (one-hole, Ih) and excited (shake-up) states of the cation. In practice, one usually restricts the portion of shake-up space to be spanned to the 2h-lp (two-hole, one-particle) states defined by a single-electron transition, neglecting therefore excitations of higher rank (3h-2p, 4h-3p. ..) in the ionized system. In the so-called ADC[3] scheme (22), elertronic correlation effects in the reference ground state are included through third-order. In this scheme, multistate 2h-lp/2h-lp configuration interactions are also accounted for to first-order, whereas the couplings of the Ih and 2h-lp excitation manifolds are of second-order in electronic correlation. [Pg.81]


See other pages where Excited states, defined is mentioned: [Pg.394]    [Pg.655]    [Pg.394]    [Pg.502]    [Pg.2740]    [Pg.655]    [Pg.394]    [Pg.655]    [Pg.394]    [Pg.502]    [Pg.2740]    [Pg.655]    [Pg.35]    [Pg.1047]    [Pg.1062]    [Pg.1065]    [Pg.1121]    [Pg.2208]    [Pg.2317]    [Pg.44]    [Pg.258]    [Pg.386]    [Pg.16]    [Pg.343]    [Pg.390]    [Pg.390]    [Pg.65]    [Pg.245]    [Pg.752]    [Pg.503]    [Pg.302]    [Pg.692]    [Pg.327]    [Pg.61]    [Pg.105]    [Pg.169]    [Pg.240]    [Pg.12]    [Pg.50]    [Pg.855]    [Pg.173]   
See also in sourсe #XX -- [ Pg.292 ]




SEARCH



© 2024 chempedia.info