Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mobility classical

Charge carriers in a semiconductor are always in random thermal motion with an average thermal speed, given by the equipartion relation of classical thermodynamics as m v /2 = 3KT/2. As a result of this random thermal motion, carriers diffuse from regions of higher concentration. Applying an electric field superposes a drift of carriers on this random thermal motion. Carriers are accelerated by the electric field but lose momentum to collisions with impurities or phonons, ie, quantized lattice vibrations. This results in a drift speed, which is proportional to the electric field = p E where E is the electric field in volts per cm and is the electron s mobility in units of cm /Vs. [Pg.346]

In classical column chromatography the usual system consisted of a polar adsorbent, or stationary phase, and a nonpolar solvent, mobile phase, such as a hydrocarbon. In practice, the situation is often reversed, in which case the technique is known as reversed-phase Ic. [Pg.109]

The classical theory of methylation with diazomethane was developed by Arndt from a different basis. It depends on the postulate (which can be traced back to von Pechmann " 0 of direct methylation mobile hydrogen in an acid compound is directly replaced by the methyl group, i.e., the methyl group appears in the place which the hydrogen previously occupied. For the reaction of tautomeric substances with diazomethane, the following equation is applicable ... [Pg.249]

In the first version with a mobile phase of constant composition and with single developments of the bilayer in both dimensions, a 2-D TLC separation might be achieved which is the opposite of classical 2-D TLC on the same monolayer stationary phase with two mobile phases of different composition. Unfortunately, the use of RP-18 and silica as the bilayer is rather complicated, because the solvent used in the first development modifies the stationary phase, and unless it can be easily and quantitatively removed during the intermediate drying step or, alternatively, the modification can be performed reproducibly, this can result in inadequate reproducibility of the separation system from sample to sample. It is therefore suggested instead that two single plates be used. After the reversed-phase (RP) separation and drying of the plate, the second, normal-phase, plate can be coupled to the first (see Section 8.10 below). [Pg.177]

Classical gel electrophoresis has been used extensively for protein and nucleic acid purification and characterization [9, 10], but has not been used routinely for small molecule separations, other than for polypeptides. A comparison between TLC and electrophoresis reveals that while detection is usually accomplished off-line in both electrophoretic and TLC methods, the analyte remains localized in the TLC bed and the mobile phase is immediately removed subsequent to chromatographic development. In contrast, in gel electrophoresis, the gel matrix serves primarily as an anti-... [Pg.289]

In disordered materials such as amorphous silicon, the mobility is so low that it would correspond to a mean free path lower than the distance between atomic sites, which is not physically pertinent. In a classical paper, Anderson [20 has shown that disorder in a solid may result in a localization of the states, in which case the one-electron wave function takes an exponential form... [Pg.254]

It can be seen from equation (2) that when y 0 the model falls into the classical expression for the rate of conversion of free radical polymerization. Equation (la) shows that this will be the case whenever all macroradicals have the same high mobility (i.e., as n tends to infinity) or when both entangled and non-entangled radicals have the same termination rate constant (i.e. a is equal to unity). [Pg.362]

The stationary phase matrices used in classic column chromatography are spongy materials whose compress-ibihty hmits flow of the mobile phase. High-pressure liquid chromatography (HPLC) employs incompressible silica or alumina microbeads as the stationary phase and pressures of up to a few thousand psi. Incompressible matrices permit both high flow rates and enhanced resolution. HPLC can resolve complex mixtures of Upids or peptides whose properties differ only slightly. Reversed-phase HPLC exploits a hydrophobic stationary phase of... [Pg.23]

We first note the very large differences in column performance for the two methods. Effective plates per second represents the speed characteristics of a column (e.g., the number of plates that can be generated in a given time interval) (13). As can be seen, HPLC is 100 to 1000 times faster than classTcal LC. (We shall discuss the differences between PLB and PB in the next section.) This improved performance arises mainly from the use of significantly smaller particle sizes in HPLC. Moreover, in classical LC, the mobile phase is delivered to the column by gravity feed, hence, the very low mobile phase velocities. In HPLC, it is desireable to improve performance... [Pg.228]

In the classical theory of conductivity of electrolyte solutions, independent ionic migration is assumed. However, in real solutions the mobilities Uj and molar conductivities Xj of the individual ions depend on the total solution concentration, a situation which, for instance, is reflected in Kohhausch s square-root law. The values of said quantities also depend on the identities of the other ions. All these observations point to an influence of ion-ion interaction on the migration of the ions in solution. [Pg.122]

Classical PLC involves migration of a mobile phase by capillary action through a 0.5- to 2-mm layer of adsorbent for separating compounds in amounts of 10 to 1000 mg. This separation method requires a good knowledge of chromatography, the most basic equipment, and simple operational skills. The main aim of PLC is to obtain a maximum yield of separation, not a maximum peak (spot) capacity [3]. The principal factors that may influence a PLC separation [1 ] are shown in Figure 4.1. [Pg.62]

In reversed-phase thin-layer chromatography (RP-TLC), the choice of solvents for the mobile phase is carried out in a reversed order of strength, comparing with the classical TLC, which determines a reversed order of values of compounds. The reversed order of separation assumes that water is the main component of the mobile phase. Aqueous mixmres of some organic solvents (diethyl ether, methanol, acetone, acetonitrile, dioxane, i-propanol, etc.) are used with good results. [Pg.86]

As explained in Chapter 1, classical preparative layer chromatography (PLC) involves flow of the mobile phase by capillary action. The method uses relatively basic equipment and is not expensive. [Pg.177]

There was therefore a clear need to assess the assumptions inherent in the classical kinetic approach for determining surface-catalysed reaction mechanisms where no account is taken of the individual behaviour of adsorbed reactants, substrate atoms, intermediates and their respective surface mobilities, all of which can contribute to the rate at which reactants reach active sites. The more usual classical approach is to assume thermodynamic equilibrium and that surface diffusion of reactants is fast and not rate determining. [Pg.51]

Principles and Characteristics Column liquid chromatography is the parent of all other types of chromatography. The technique used by Tswett is now called classical open-column liquid chromatography or simply LC. In column chromatography the stationary phase is contained in a column and the mobile phase flows... [Pg.230]


See other pages where Mobility classical is mentioned: [Pg.166]    [Pg.407]    [Pg.98]    [Pg.90]    [Pg.92]    [Pg.10]    [Pg.288]    [Pg.288]    [Pg.300]    [Pg.1057]    [Pg.1298]    [Pg.216]    [Pg.367]    [Pg.383]    [Pg.476]    [Pg.21]    [Pg.434]    [Pg.6]    [Pg.80]    [Pg.450]    [Pg.220]    [Pg.20]    [Pg.4]    [Pg.69]    [Pg.113]    [Pg.212]    [Pg.300]    [Pg.318]    [Pg.563]    [Pg.8]    [Pg.153]    [Pg.106]    [Pg.244]    [Pg.125]    [Pg.231]    [Pg.231]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



© 2024 chempedia.info