Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixed monolayers surface pressure

The spread mixed lipid monolayer studies provide information about the packing and orientation of such molecules at the water interface. These interfacial characteristics affect many other systems. For instance, mixed surfactants are used in froth flotation. The monolayer surface pressure of a pure surfactant is measured after the injection of the second surfactant. From the change in n, the interaction mechanism can be measured. The monolayer method has also been used as a model biological membrane system. In the latter BLM, lipids are found to be mixed with other lipidlike molecules (such as cholesterol). Hence, mixed monolayers of lipids + cholesterol have been found to provide much useful information on BLM. The most important BLM and temperature melting phenomena is the human body temperature regulation. Normal body temperature is 37°C (98°F), at which all BLM function efficiently. [Pg.88]

Fig. IV-21. Surface pressure versus area for monolayers of immiscible components a monolayer of pure cadmium arachidate (curve 1) and monolayers of mixed merocyanine dye, MC2, and cadmium arachidate of molar ratio r = 1 10 (curve 2) 1 5 (curve 3), 1 2 (curve 4), and pure MC2 (curve 5). The subphase is 2.5 x 0 M CdC, pH = 5.5 at 20°C. Curve 3a (O) was calculated from curves 1 and 5 using Eq. IV-44. (From Ref. [116].)... Fig. IV-21. Surface pressure versus area for monolayers of immiscible components a monolayer of pure cadmium arachidate (curve 1) and monolayers of mixed merocyanine dye, MC2, and cadmium arachidate of molar ratio r = 1 10 (curve 2) 1 5 (curve 3), 1 2 (curve 4), and pure MC2 (curve 5). The subphase is 2.5 x 0 M CdC, pH = 5.5 at 20°C. Curve 3a (O) was calculated from curves 1 and 5 using Eq. IV-44. (From Ref. [116].)...
In a study of mixed monolayers of C60 and p-iert-butylcalix[8]arene, different isotherm behavior was obtained [256]. The surface pressure was observed to rise at a lower molecular area (1.00 nm molecule vs. 2.30 mn molecule in the prior study). Similar isotherms were observed whether a 1 1 mixture or a solution prepared by dissolving the preformed 1 1 complex was spread. The UV spectra of the transferred LB films appeared different than that of bulk C60. It was concluded that a stable 1 1 complex could be formed by spreading the solution either of the mixture or of the complex. This was confirmed in a later study by the same group that included separate spreading of the calixarene and the C60... [Pg.105]

Once it has been established that the components of a binary monolayer are to some degree miscible, the energetics of their interaction may be calculated directly from the 11/A isotherms of the mixture and its individual components. As proposed by Goodrich (1957), this technique employs the differences in the work of compression of the binary film and the work required to compress each of the films of the pure components to the same surface pressure. The result is the total free energy of mixing as expressed by the sum of the excess and ideal free energies of mixing in (14), where Nt... [Pg.67]

Fig. 32 Surface pressure/area isotherms for the compression/expansion cycles of diastereomeric monolayers of (R or S)-iV-(a-methylbenzyl)stearamides mixed 1 1 with (R or S )-stearoylalanine methyl esters on a pure water subphase at 35°C. Dashed lines denote heterochiral pairs (R S or R S) and solid lines denote homochiral pairs (R R or S S ). Fig. 32 Surface pressure/area isotherms for the compression/expansion cycles of diastereomeric monolayers of (R or S)-iV-(a-methylbenzyl)stearamides mixed 1 1 with (R or S )-stearoylalanine methyl esters on a pure water subphase at 35°C. Dashed lines denote heterochiral pairs (R S or R S) and solid lines denote homochiral pairs (R R or S S ).
Since it has been shown that nonideal mixing occurs in the 2.5-15.0 dyn cm 1 range, the excess free energies of interaction were calculated for compressions of each pure component and their mixtures to each of these surface pressures. In addition, these surface pressures are below the ESPs and/or monolayer stability limits so that dynamic processes arising from reorganization, relaxation, or film loss do not contribute significantly to the work of compression. [Pg.123]

The changing in surface pressure as a function of a molar mixing ratio was investigated for the BSA - CaM conjugated monolayer. Also in this... [Pg.360]

In biological systems, the lung fluid exhibits surface pressure characteristics that are related to its lipid composition. The ratio between two different lipids has been shown to be critical for lung function in newborn babies. Recent studies of mixed monolayers have been made using AFM (Birdi, 2002a). [Pg.89]

A generalized nonideal mixed monolayer model based on the pseudo-phase separation approach is presented. This extends the model developed earlier for mixed micelles (J. Phys. Chem. 1983 87, 1984) to the treatment of nonideal surfactant mixtures at interfaces. The approach explicity takes surface pressures and molecular areas into account and results in a nonideal analog of Butler s equation applicable to micellar solutions. Measured values of the surface tension of nonideal mixed micellar solutions are also reported and compared with those predicted by the model. [Pg.102]

One interesting feature of the functional form derived here is the direct relationship of the activity coefficients and composition between the micellar and surface psuedo-phases. This allows a comparison of nonideal interactions in the micelle and monolayer as modeled by their respective net interaction parameters. In principle, this form may also allow extension to more complicated situations such as the treatment of contact angles in nonideal mixed surfactant systems. Here, the functional form derived above depends on differences in surface pressures and these may be directly obtained from experimentally measured parameters under the proper conditions (30). [Pg.106]

Results for the various binary mixed surfactant systems are shown in figures 1-7. Here, experimental results for the surface tension at the cmc (points) for the mixtures are compared with calculated results from the nonideal mixed monolayer model (solid line) and results for the ideal model (dashed line). Calculations of the surface tension are based on equation 17 with unit activity coefficients for the ideal case and activity coefficients determined using the net interaction 3 (from the mixed micelle model) and (equations 12 and 13) in the nonideal case. In these calculations the area per mole at the surface for each pure component, tOj, is obtained directly from the slope of the linear region in experimental surface tension data below the cmc (via equation 5) and the maximum surface pressure, from the linear best fit of... [Pg.107]

Mixed Films. Isotherm data from two-component monolayers are frequently represented by plotting the mean molecular area as a function of film composition at constant surface pressure. A linear relationship is usually obtained when the two components are immiscible or when they form an ideal two-dimensional solution. For miscible components, deviations from ideality result in a nonlinearity in the plot. Positive deviations indicate an Increase in the area occupied by either one or both components, probably due to... [Pg.128]

A model that is consistent with these observations of the action of trypsin and phospholipase A and with the discontinuities in the All-composition curves (Figures 2 and 3) is one in which the lipid monolayer is not a continuous palisade of uniformly oriented lipid molecules but rather an assembly of surface micelles. In this model, proposed by Colacicco (4, 5), the protein first comes into contact with the lipid molecules at the periphery of the surface micelles and then inserts itself as a unit between them. This is the basis for the generalized nonspecific interaction between lipids and proteins which results in increase of surface pressure. One may thus explain the identical All values obtained with films of lecithin and 80 mole % lactoside by picturing the lecithin molecules outside and the lactoside molecules inside the surface micelles. In this model lecithin prevents the bound lactoside from interacting nonspecifically with globulin and produces the same increase in pressure as with a film of pure lecithin. In the mixed micelle the lactose moiety of the lactoside protrudes into the aqueous subphase. Contact of the protein with these or other nonperipheral regions of the surface micelle would not increase the surface pressure. [Pg.173]

Surface Pressure, Potential, and Fluidity Characteristics for Various Interactions in Mixed Monolayers. It is possible to distinguish various types of interactions which occur in mixed monolayers by measuring the surface pressure, surface potential, and surface fluidity of the monolayers. Deviation from the additivity rule of molecular areas indicates either an interaction between components or the intermolecular cavity effect in mixed monolayers. [Pg.202]

Figure 5. Interactions in mixed monolayers and their surface pressure, potential, and fluidity characteristics... Figure 5. Interactions in mixed monolayers and their surface pressure, potential, and fluidity characteristics...
Even though 1,2-dilinoleoyl and l-palmitoyl-2-linolenoyl lecithins form more expanded monolayers than egg lecithin, their mixed mono-layers with cholesterol follow the additivity rule (48). This can be explained as follows. At low surface pressures, these lecithins have greater intermolecular spacing and hence form intermolecular cavities of smaller height which cannot accommodate cholesterol molecules (Figure 4e). At high surface pressure, the linoleoyl and linolenoyl chains, as opposed to oleoyl chains, do not form cavities in the monolayer (Figure lOi). [Pg.210]

Various types of molecular interactions which occur in mixed mono-layers can be distinguished by simultaneous measurements of the surface pressure, potential, and fluidity of monolayers. Limitations of Goodrich s thermodynamic treatment of mixed monolayers are mentioned. Surface properties of cholesterol have been correlated with its function in biomembranes. [Pg.214]


See other pages where Mixed monolayers surface pressure is mentioned: [Pg.343]    [Pg.82]    [Pg.103]    [Pg.105]    [Pg.117]    [Pg.129]    [Pg.642]    [Pg.644]    [Pg.67]    [Pg.122]    [Pg.94]    [Pg.231]    [Pg.262]    [Pg.265]    [Pg.309]    [Pg.361]    [Pg.250]    [Pg.250]    [Pg.252]    [Pg.370]    [Pg.106]    [Pg.121]    [Pg.311]    [Pg.230]    [Pg.196]    [Pg.204]    [Pg.205]    [Pg.206]    [Pg.211]   
See also in sourсe #XX -- [ Pg.334 ]




SEARCH



Monolayer mixed

Monolayers mixed

Pressure monolayers

Surface monolayer

Surface pressure

© 2024 chempedia.info