Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mitsubishi first generation process

Mitsubishi Chemical s 1,4-Butanediol Manufacturing Process First-Generation Process... [Pg.165]

As a result, the second-generation processes used rhodium as the metal. The first rhodium-catalysed, ligand-modified process came on stream in 1974 (Celanese) and more were to follow in 1976 (Union Carbide Corporation) and in 1978 (Mitsubishi Chemical Corporation), all using triphenylphosphine (tpp). The UCC (now Dow) process has been licensed to many other users and it is... [Pg.139]

Nevertheless, in comparison with the cobalt technology even the first generation of LPO processes (the expression LPO being coined by BP [266]) proved successful and was promoted by a number of companies (e.g., Celanese, Union Carbide, BASF, Mitsubishi), mostly in parallel. One of the first plants for butanal production belonged to Celanese [192] (later Hoechst-Celanese), closely followed by Union Carbide/Davy Powergas/Johnson Matthey [193] and other companies. [Pg.75]

Rhodococcus sp. N-774 and Pseudomonas chlororaphis B23 resting cells have been used at industrial scale (as first- and second-generation biocatalysts) for the biological production of acrylamide from acrylonitrile since the 1980s [21]. Currently Rhodococcus rhodochrous J1 is being adopted as a third-generation biocatalyst (Mitsubishi Rayon Co.). The industrial production of nicotinamide from 3-cyanopyridine is also operated with this strain (Lonza AG). However, despite the enormous potentiality of nitrile-hydrolyzing biocatalysts for industrial applications, only a few commercial processes have been realized [22]. [Pg.273]

Mitsubishi Rayon produces acrylamide from acrylonitrile with the help of an immobilized bacterial enzyme, nitrile hydratase (see Fig. 9.20). This acrylamide is then polymerized to the conventional plastic polyacrylamide. This process was one of the first large-scale applications of enzymes in the bulk chemical industry and replaced the conventional process that used sulfuric acid and inorganic catalysts. The enzymatic process has several advantages over the chemical process. The efficiency of the enzymatic process is 100%, while that of the previous chemical process was only 30-45%. The energy consumption is only 0.4MJ/kg product, compared to 1.9MJ/kg product for the chemical route. The process generates less waste. The CO2 production is only 0.3 kg/kg monomer, while the previous process produced 1.5 kg/kg. The reaction is carried out at 15°C, which is milder than the original chemical route. About 100,000 tons of acrylamide are produced yearly now via this approach in Japan and other countries. [Pg.267]

Rhodium, besides cobalt, is the only metal that is used in technical-scale hydroformylation. Because of the classification of industrial hydroformylation processes made by Cornils [1], with rhodium, the third generation, after two generations of Co-based hydroformylation, process was ushered. The first plants went on stream in the 1970s (1974 Ruhrehemie (nowadays Celanese) 1976 Union Carbide Corporation (nowadays Dow) 1978 Mitsubishi Chemical Corporation). These units operate with P-ligand-modified Rh catalysts at low... [Pg.24]


See other pages where Mitsubishi first generation process is mentioned: [Pg.8]    [Pg.127]    [Pg.5]    [Pg.484]   


SEARCH



First generation

Mitsubishi

Mitsubishi process

© 2024 chempedia.info