Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mitochondria and

Hydroxy vitamin D pools ia the blood and is transported on DBF to the kidney, where further hydroxylation takes place at C-1 or C-24 ia response to calcium levels. l-Hydroxylation occurs primarily ia the kidney mitochondria and is cataly2ed by a mixed-function monooxygenase with a specific cytochrome P-450 (52,179,180). 1 a- and 24-Hydroxylation of 25-hydroxycholecalciferol has also been shown to take place ia the placenta of pregnant mammals and ia bone cells, as well as ia the epidermis. Low phosphate levels also stimulate 1,25-dihydtoxycholecalciferol production, which ia turn stimulates intestinal calcium as well as phosphoms absorption. It also mobilizes these minerals from bone and decreases their kidney excretion. Together with PTH, calcitriol also stimulates renal reabsorption of the calcium and phosphoms by the proximal tubules (51,141,181—183). [Pg.136]

These predictive methods are very useful in many contexts for example, in the design of novel polypeptides for the identification of possible antigenic epitopes, in the analysis of common motifs in sequences that direct proteins into specific organelles (for instance, mitochondria), and to provide starting models for tertiary structure predictions. [Pg.352]

Atractyligenin and its sulfated glucoside (actractyloside) are toxins which block the transport of ADP into mitochondria and which occur in the coffee bean. Atractyligenin was synthesized following a multistrategic retrosynthetic plan in which the disconnection of ring B was a major objective. Novel stereocontrolled processes were employed for the critical cyclization to form the tetracarbocyclic network and for introduction of the carboxylic substituent. [Pg.198]

Muscle cells contain two different isozymes of creatine kinase, one in the mitochondria and one in the sarcoplasm. Explain. [Pg.563]

Finally, citrate can be exported from the mitochondria and then broken down by ATP-citrate lyase to yield oxaloacetate and acetyl-CoA, a precursor of fatty acids (Figure 20.23). Oxaloacetate produced in this reaction is rapidly reduced to malate, which can then be processed in either of two ways it may be transported into mitochondria, where it is reoxidized to oxaloacetate, or it may be oxidatively decarboxylated to pyruvate by malic enzyme, with subse-... [Pg.662]

FIGURE 20.23 Export of citrate from mitochondria and cytosolic breakdown produces oxaloacetate and acetyl-CoA. Oxaloacetate is recycled to malate or pyruvate, which re-enters the mitochondria. This cycle provides acetyl-CoA for fatty acid synthesis in the cytosol. [Pg.663]

Several additional points should be made. First, although oxygen esters usually have lower group-transfer potentials than thiol esters, the O—acyl bonds in acylcarnitines have high group-transfer potentials, and the transesterification reactions mediated by the acyl transferases have equilibrium constants close to 1. Second, note that eukaryotic cells maintain separate pools of CoA in the mitochondria and in the cytosol. The cytosolic pool is utilized principally in fatty acid biosynthesis (Chapter 25), and the mitochondrial pool is important in the oxidation of fatty acids and pyruvate, as well as some amino acids. [Pg.783]

As seen already, palmitate is the primary product of the fatty acid synthase. Cells synthesize many other fatty acids. Shorter chains are easily made if the chain is released before reaching 16 carbons in length. Longer chains are made through special elongation reactions, which occur both in the mitochondria and at the surface of the endoplasmic reticulum. The ER reactions are actually quite similar to those we have just discussed addition of two-carbon units... [Pg.813]

The fatty acids released on triacylglycerol hydrolysis are transported to mitochondria and degraded to acetyl CoA, while the glycerol is carried to the liver for further metabolism. In the liver, glycerol is first phosphorylated by reaction with ATP. Oxidation by NAD+ then yields dihydroxyacetone phosphate (DHAP), which enters the carbohydrate metabolic pathway. We ll discuss this carbohydrate pathway in more detail in Section 29.5. [Pg.1132]

Central core disease (CCD) is an autosomal dominant, non-progressive myopathy characterized by hypotonia and proximal muscle weakness in infancy. CCD is named after detection of characteristic central cores that lack both mitochondria and oxidative enzyme... [Pg.345]

Heme (C34H3204N4Fe) represents an iron-porphyrin complex that has a protoporphyrin nucleus. Many important proteins contain heme as a prosthetic group. Hemoglobin is the quantitatively most important hemoprotein. Others are cytochromes (present in the mitochondria and the endoplasmic reticulum), catalase and peroxidase (that react with hydrogen peroxide), soluble guanylyl cyclase (that converts guanosine triphosphate, GTP, to the signaling molecule 3, 5 -cyclic GMP) and NO synthases. [Pg.581]

Neurodegeneration. Figure 3 Illustration of synaptic (neuritic) apoptosis. A pyramidal neuron is depicted with cortical afferents synapsing on its dendrites. Localized apoptotic mechanisms lead to the release of cytochrome c from the mitochondria and an increase in the concentration of activated caspase-3 in a presynaptic terminal that is synapsing on a dendritic spine. Increased caspase-3 activity results in a localized breakdown of this nerve terminal and its synapse. Subsequently, the postsynaptic dendritic spine retracts and disappears (Figure modified from Glantz et al. [5] [3]). [Pg.825]

NAD+ and NADP+ are coenzymes of dehydrogenases. NADH and NADPH are intermediate carriers of both hydrogen and electrons. Most NAD-dependent enzymes are located in the mitochondria and deliver H2 to the respiratory chain whereas NADP-dependent enzymes take part in cytosolic syntheses (reductive biosyntheses). [Pg.850]

Skeletal muscle contains three types of fiber fast-twitch oxidative glycolytic (type 2A), fast-twitch glycolytic (type 2B), and slow-rwitch oxidative fibers (type 1). The proportion of each fiber type varies in different muscles. Different fiber types contain different isoforms of myosin, although there is no evidence that their mitochondria differ qualitatively. It has been reported that there are differences between subsarcolemmal mitochondria and those deeper in the same fiber but this has been questioned (see Sherratt et al., 1988 for references). [Pg.111]

If the glycolytic flux is slow much of the pyruvate formed enters the mitochondria and is oxidized by the citrate cycle and reducing equivalents (2H) from NADH are oxidized indirectly (see below). When the flux is fast there is net production of... [Pg.111]

The metabolism of amino acids is complex and is described in standard text books. These are usually converted by aminotransferases to the corresponding 2-oxoacids which are partly oxidized in the matrix of muscle mitochondria and partly exported to the liver. Glutamate and aspartate yield 2-oxoglutarate and oxaloacetate, respectively, which enter the citrate cycle directly, and other 2-... [Pg.116]

Normally, these reactive species are destroyed by protective enzymes, such as superoxide dismutase in mitochondria and cytosol and catalase in peroxisomes, but if a tissue has been anoxic the respiratory chain is very reduced and reoxygenation allows dangerous amounts to be formed. Muscle also contains significant quantities of the dipeptide, camosine ((J-alanylhistidine) (10—25 mM). The functions of camosine are obscure although it has been suggested to be an effective antioxidant (Pavlov et al., 1993). [Pg.135]

In rat liver mitochondria, in state 4, the AP was estimated to be about 220 mV, with the membrane potential representing about 90% of this (Nicholls, 1974 Appendix 3). Similar values have been reported for human and rat skeletal muscle mitochondria in state 4 (Stumpf et al., 1982). The control of the rate of electron transport is not only determined by the availability of ADP, but also of Pj oxidizable substrates, and oxygen. There is evidence for futile cycling of protons in intact normal rat hepatocytes (Brand et al., 1993). Recently, Porter and Brand (1993) found a correlation between the proton permeability of the inner membrane of liver mitochondria and body size in animals from the mouse (20 g) to horses (150 kg) with a decrease in permeability with increasing weight of several-fold at a constant... [Pg.136]

Brand, M.D. Murphy, M.P. (1987). Control of electron flux through the respiratory chain in mitochondria and cells. Biol. Rev. 62, 141-193. [Pg.151]

Brown, G.C. (1992). Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J. 284,1-13. [Pg.151]

Porter, K. Brand, M.D. (1993). Body mass dependence of H leak in mitochondria and its relevance to metabolic rate. Nature 362,628-630. [Pg.153]

Friedrich, T., Steinmuller, K., Weiss, H. (1995). The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. (Review). FEBS Letters 367, 107-111. [Pg.154]

Histopathological features are dominated by the large number of centrally-placed muscle nuclei, sometimes affecting more than 90% of muscle fibers. The nuclei form long chains in the middle of the fiber and are surrounded by cytoplasm, which contains mitochondria and membranous vesicles, but no myofibrils. This morphological appearance has prompted comparison with myotubes, and in fact centronuclear myopathies are sometimes referred to as myotubular myopathies. This is a misnomer, however, since although the affected fibers retain some of the structural features of myotubes, and maturational arrest may play a role in their formation, the vast majority of such fibers are fully differentiated histochemically into either type 1 or type 2. [Pg.294]

Pathogenesis of MH is not completely understood. Skeletal muscle, however, is the one tissue in MH with proven abnormalities, and it is further thought that the basic defect that causes the syndrome lies in the calcium regulation system found within the myoplasm. For example, calcium transport function appears to be decreased in the sarcoplasmic reticulum, mitochondria, and sarcolemma. Thus, the suggestion has been made that MH is characterized by a generalized membrane defeet. [Pg.402]

Fig. 3-7 A thin section through a prokaryotic cell. Note that the nuclear material (N) is not bound by a membrane, but is free in the cytoplasm. Mitochondria and other intracytoplasmic structures are absent. (Reprinted with permission from J. J. Cardamone, Jr., Univ. of Pittsburgh/Biological Photo Service.)... Fig. 3-7 A thin section through a prokaryotic cell. Note that the nuclear material (N) is not bound by a membrane, but is free in the cytoplasm. Mitochondria and other intracytoplasmic structures are absent. (Reprinted with permission from J. J. Cardamone, Jr., Univ. of Pittsburgh/Biological Photo Service.)...

See other pages where Mitochondria and is mentioned: [Pg.93]    [Pg.10]    [Pg.12]    [Pg.28]    [Pg.338]    [Pg.582]    [Pg.671]    [Pg.736]    [Pg.736]    [Pg.780]    [Pg.252]    [Pg.160]    [Pg.233]    [Pg.324]    [Pg.488]    [Pg.822]    [Pg.823]    [Pg.824]    [Pg.63]    [Pg.108]    [Pg.129]    [Pg.140]    [Pg.151]    [Pg.387]    [Pg.390]    [Pg.428]   


SEARCH



Bacteria mitochondria and

Ca2t uptake and release by mitochondria inhibition

Cells, Mitochondria, and Cell Membranes

Membranes mitochondria and

Metabolism and Release of Cytochrome c from Mitochondria

Mitochondria and ageing

Mitochondria and apoptosis

Mitochondria and oxidative

Mitochondria and oxidative phosphorylation

Mitochondria relevance of low and high molecular

Mitochondria structure and function

Mitochondrion and nucleus

Protein Translocation into Mitochondria and ER

Subfractionation, and Enzymatic Analysis of Beef Heart Mitochondria

Targeting of Mitochondria and Proapoptotic Activities

The Origins of Mitochondria, Mitosomes and Hydrogenosomes

The uncoupled state of traditionally isolated and tested brown adipose tissue mitochondria

Transport into and out of mitochondria

Transport of Adenine Nucleotides to and from Mitochondria

© 2024 chempedia.info