Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microsuspension Polymerization Process

Brandstetter et al. [25] produced similar particles without the intensive shearing step by polymerizing acrylate monomer in water in the presence of a long-chain alcohol, an emulsifier and a water-insoluble initiator. The particles have a mean particle size of 0.2-6 p,m. After their preparation the particles can be grafted with SAN and then used as impact modifiers for ASA or as delustering agents for thermoplastics [26]. [Pg.347]


To compensate for the low toughness in ASA when using small rubber particles, large particles prepared using the microsuspension polymerization process can be added to the products (700 nm to 100 xm) [22]. Further work showed that the use of particles with a diameter of 0.15-0.8 p,m brings better toughness than a particle size of less than 0.1 xm [33]. [Pg.352]

The use of core-shell impact modifiers for sPS is also patented in EP 318793 [15] (see Table 19.1). These impact modifiers are usually prepared using the emulsion polymerization process, although other methods such as the microsuspension polymerization process are possible. The core usually consists of polymers prepared from an acrylate, especially butyl or 2-ethylhexyl acrylate or butadiene. These rubber particles are then grafted with vinyl monomers, where... [Pg.423]

If surfactant is added to a suspension polymerization system, a number of phenomena may occur. If the surfactant is added in small amounts (below the critical micelle concentration or CMC), the reduction in interfacial tension between the organic and aqueous phases will result in smaller monomer droplets, but it has hardly any other effect. If surfactant is added above the CMC, and an oil-soluble initiator is used, the process is commonly termed a microsuspension polymerization. Due to the reduced interfacial tension, the droplet diameter (and hence bead diameter) is reduced to approximately 10-40 pm. Little polymerization takes place in the aqueous phase or in particles generated from surfactant micelles because of the hydrophobic nature of the initiator. However, some smaller particles initiated from surfactant micelles may be found. The kinetics are still essentially those of a bulk free radical polymerization. Microsuspension polymerization is used to produce pressure-sensitive adhesives for repositionable notes. [Pg.134]

Blends consisting of crosslinked butyl acrylate particles (core) grafted with styrene (shell) have been reported in the literature. The particles were prepared using microsuspension [8] (0.5-2.0 pm) or emulsion (particle diameter 0.12 xm) polymerization processes [9]. [Pg.588]

Emulsion polymerizations normally produce polymer particles with diameters ofO.I-l pm(l pm= I micron= 10 cm), although much larger particles can be made by special techniques mentioned in Chapter 8. Tlie polymer particles made by suspension reactions have diameters in the range of 50-500 pm. Recall that free-radical initiation in suspension reactions is in the monomer phase, whereas the aqueous phase is the initiation site in emulsion polymerizations. The two processes often dilTer also in the types of stabilizers that are used. Microsuspension polymerization is an alternative technique which can yield particles in the same size range as emulsion processes. This method uses a monomer-soluble initiator and anionic emulsifiers similar in nature and concentration to those used in emulsion polymerizations. A microdispersion of the mixture of the reaction ingredients is first produced mechanically and is then polymerized to provide polymer with essentially the initial fine particle size distribution. [Pg.363]

From the point of view of the polymerization process, bulk (mass) polymerization produces the purest PVC because only initiators and vinyl chloride are used in the process. Bulk polymerization is capable to yield 99.9% pure polymer. In suspension polymerization, a suspending agent is added in addition to initiator, which decreases the purity of suspension PVC to about 99.8%. Microsuspension polymer contains emulsifier and its piuity can be approximately 98.8%. Emulsion polymer may contain more emulsifier and initiator rests and its purity can be estimated as 98%. All these results are quite good for commercial product and PVC can be considered as a relatively pure polymer. More admixtures are usually introduced on the compounding stage from various contaminations and brought together with additives. [Pg.29]

Microsuspension polymerization is a process used in the PVC industry to produce resins for plastisols [125], In this process, which resembles miniemulsion polymerization, a mixture of monomer and an oil-soluble initiator are dispersed in an aqueous solution of surfactants using intensive shear. The monomer droplets are polymerized yielding particles usually <2 pm, which are normally isolated by spray drying as they cannot be separated by centrifuging or filtering. These particles are solid and nonporous. The polymer particles are larger than the monomer droplets (0.1-2 pm) because the combined effect of the Ostwald ripening (as no costabilizer is used in the formulation) and droplet/particle coalescence. [Pg.72]

Inverse microsuspension is a commercial process for the production of high molecular weight, water-soluble polymers. Monomers are dispersed in a continuous organic phase, usually paraffinic, and sterically stabilized. Polymerization can be initiated with an oil- or water-soluble initiator. [Pg.178]

When water-soluble initiators are used, most of the authors concluded that acrylamide polymerization proceeds within the monomer droplets, irrespective of the nature of the organic phase (aromatic or aliphatic) [28,30-34], Both monomer and initiator reside in the dispersed droplets and each particle acts as a small batch reactor. The process is essentially a suspension polymerization and therefore the kinetics resemble those for solution polymerization. Note that a prefix micro has been added in some cases to this type of polymerization (microsuspension) to emphasize the smallness of the reactor (d 1 pm) and the possibility of interfacial reactions [33]. A square root dependence of the polymerization rate, / p, on initiator concentration, [I] was often observed, in good accord with solution polymerization [28,32-34]. Higher orders were also found which were attributed to chain transfer to the emulsifier [30]. The reaction order with respect to monomer was found to vary from 1 [2832] to 1.7 [3031]> Orders higher than 1 are common for acrylamide polymerization in homogeneous aqueous solution and are explained by the occurrence of a cage effect [35]. [Pg.377]

When a water-miscible polymer is to be made via a suspension process, the continuous phase is a water-immiscible fluid, often a hydrocarbon. In such circumstances the adjective inverse is often used to identify the process [118]. The drop phase is often an aqueous monomer solution which contains a water-soluble initiator. Inverse processes that produce very small polymer particles are sometimes referred to as inverse emulsion polymerization but that is often a misnomer because the polymerization mechanism is not always analogous to conventional emulsion polymerization. A more accurate expression is either inverse microsuspension or inverse dispersion polymerization. Here, as with conventional suspension polymerization, the polymerization reaction occurs inside the monomer-containing drops. The drop stabilizers are initially dispersed in the continuous (nonaqueous phase). If particulate solids are used for drop stabilization, the surfaces of the small particles must be rendered hydrophobic. Inverse dispersion polymerization is used to make water-soluble polymers and copolymers from monomers such as acrylic acid, acylamide, and methacrylic acid. These polymers are used in water treatment and as thickening agents for textile applications. Beads of polysaccharides can also be made in inverse suspensions but, in those cases, the polymers are usually preformed before the suspension is created. Physical changes, rather than polymerization reactions, occur in the drops. Conventional stirred reactors are usually used for inverse suspension polymerization and the drop size distribution can be fairly wide. However, Ni et al. [119] found that good control of DSD and PSD could be achieved in the inverse-phase suspension polymerization of acrylamide by using an oscillatory baffled reactor. [Pg.239]


See other pages where Microsuspension Polymerization Process is mentioned: [Pg.347]    [Pg.347]    [Pg.125]    [Pg.125]    [Pg.128]    [Pg.128]    [Pg.3760]    [Pg.386]    [Pg.492]    [Pg.347]    [Pg.358]    [Pg.8947]   


SEARCH



Microsuspension polymerization

© 2024 chempedia.info