Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiphase microstructure

Therefore, high transformation rates can be obtained in fluid-fluid devices with high interfacial area. Microstructured multiphase reactors are characterized by interfacial areas, which are at least 1 order of magnitude higher compared to conventional contactors, and, therefore, suited particularly for very fast reactions. [Pg.316]

Regular flow patterns are provided by the segmented flow in a single capillary or in multi-channel microreactors. Miniaturized packed-bed microreactors follow the paths of classical engineering by enabling tridde-bed or packed bubble column operation. M ost of the microstructured multiphase reactors are at the research stage. Due to the small reaction volumes th will find their appHcation mainly in small-scale production in the fine chemical and pharmaceutical industries. [Pg.427]

The Knoop test is a microhardness test. In microhardness testing the indentation dimensions are comparable to microstructural ones. Thus, this testing method becomes useful for assessing the relative hardnesses of various phases or microconstituents in two phase or multiphase alloys. It can also be used to monitor hardness gradients that may exist in a solid, e.g., in a surface hardened part. The Knoop test employs a skewed diamond indentor shaped so that the long and short diagonals of the indentation are approximately in the ratio 7 1. The Knoop hardness number (KHN) is calculated as the force divided by the projected indentation area. The test uses low loads to provide small indentations required for microhardness studies. Since the indentations are very small their dimensions have to be measured under an optical microscope. This implies that the surface of the material is prepared approximately. For those reasons, microhardness assessments are not as often used industrially as are other hardness tests. However, the use of microhardness testing is undisputed in research and development situations. [Pg.29]

Fig. 15.4 Schematic ternary-phase diagram of an oU-water-surfactant microemulsion system consisting of various associated microstructures. A, normal miceUes or O/W microemulsions B, reverse micelles or W/O microemulsions C, concentrated microemulsion domain D, liquid-crystal or gel phase. Shaded areas represent multiphase regions. Fig. 15.4 Schematic ternary-phase diagram of an oU-water-surfactant microemulsion system consisting of various associated microstructures. A, normal miceUes or O/W microemulsions B, reverse micelles or W/O microemulsions C, concentrated microemulsion domain D, liquid-crystal or gel phase. Shaded areas represent multiphase regions.
Let us concentrate a little longer on ceramics. Here micro-analysis only slowly won ground and the application of solid state physics lagged behind. Very slowly the relationship between the properties of a material and its microstructure was being discovered. Metallurgy had already been characterized by a theoretical approach for some time and consequently metals were about 15 times as important as ceramic materials in 1960 (see Ashby s graph). This was of course influenced by the fact that metals have relatively simple structures which, in their turn, simplify theoretical comtemplations. Ceramic structures are very often complex and are characterized by multiphase systems. However, at present ceramic materials are approached much differently than for instance in 1900. [Pg.23]

Silicon nitride ceramics are not merely only one material but several classes of materials. All of them are multiphased, i.e., they exhibit a heterogeneous microstructure which has formed during sintering (Sect. 6). Therefore in all classes a large variety of properties is predominant and as a consequence also a large variety of potential applications (Sect. 10). Often little variations in the powders and the processing parameters cause remarkable changes in the microstructure which have a pronounced effect on properties (Sects. 6 and 7). [Pg.90]

As discussed in the previous sections, the blend morphology as well as the processing window of the individual blend components can be identified as key factors for the foamability of multiphase blend systems [47, 84], As a first step, compatibilization via SBM triblock terpolymers was exploited for controlling the blend morphology on a nanoscale, and for reducing the difference in processing window between PPE and SAN. However, in order to exploit the benefits of all blend phases, the properties of each blend phase and the overall microstructure of the blend need to be controlled. [Pg.227]

Immiscibility of polymers in the melt is a common phenomenon, typically leading to a two-phase random morphology. If the phase separation occurs by a spinodal decomposition process, it is possible to control the kinetics in a manner that leads to multiphase polymeric materials with a variety of co-continuous structures. Common morphologies of polymer blends include droplet, fiber, lamellar (layered) and co-continuous microstructures. The distinguishing feature of co-continuous morphologies is the mutual interpenetration of the two phases and an image analysis technique using TEM has been described for co-continuous evaluation.25... [Pg.132]

In [9] Passman, Nunziato and Walsh presented a multiphase mixture in which each constituent had a simple geometrical structure characterized by a scalar kinematic parameter, its volume fraction. But when the kinematical describer is more complex and takes value on a manifold, it is necessary to consider the more general microstructure introduced, e.g., by Capriz in the essay [3], where materials as liquid crystals, granular and porous media, Cosserat and micromorphic continua are studied. [Pg.183]

We propose the balance principles for an immiscible mixture of continua with microstructure in presence of phenomena of chemical reactions, adsorption and diffusion by generalizing previous multiphase mixture [9] and use a new formulation for the balance of rotational momentum. New terms are also included in the energy equations corresponding to work done by respective terms in the micromomentum balances. [Pg.190]

Liquid-phase infiltration of preforms has emerged as an extremely useful method for the processing of composite materials. This process involves the use of low-viscosity liquids such as sols, metal- or polymer-melts. Using this infiltration process, it is possible to design new materials with unique microstructures (e.g. graded, multiphase, microporous) and unique thermomechanical properties (graded functions, designed residual strains and thermal shock). [Pg.132]

In a multiphase membrane reactor, the conversion of benzylpenicillin to 6-aminopenidllinic acid is performed. The type of microstructured reactor used is a fermentation reactor which contains the enzyme penicillin acylase immobilized on the wall of a hollow-fiber tube. The hollow-fiber tube extracts 6-aminopenicillinic acid at the same time selectively. Benzylpenicillin is converted at the outer wall of the hollow fiber into the desired product, which passes into the sweep stream inside the fiber where it can be purified, e.g. by ion exchange. The non-converted benzylpenicillin is recycled back through the reactor [84],... [Pg.549]

The melting point of titanium is 1670°C, while that of aluminium is 660°C.142 In kelvins, these are 1943 K and 933 K, respectively. Thus, the temperature 625°C (898 K) amounts to 0.46 7melting of titanium and 0.96 melting of aluminium. Hence, at this temperature the aluminium atoms may be expected to be much more mobile in the crystal lattices of the titanium aluminides than the titanium atoms. This appears to be the case even with the Ti3Al intermetallic compound. The duplex structure of the Ti3Al layer in the Ti-TiAl diffusion couple (see Fig. 5.13 in Ref. 66) provides evidence that aluminium is the main diffusant. Otherwise, its microstructure would be homogeneous. This point will be explained in more detail in the next chapter devoted to the consideration of growth kinetics of the same compound layer in various reaction couples of a multiphase binary system. [Pg.143]

In general, there may be no full correspondence between the equilibrium phase diagram of a multiphase binary system and the microstructure of the A-B transition zone occurred after isothermal annealing of the A-B reaction couple. [Pg.178]

The issues to be solved for direct fluorinations are heat release and mass transfer via the gas-liquid interface. Multiphase microstructured reactors enable process intensification [230,248-250,304—306]. Often geometrically well-defined interfaces are formed with large specific values, for example, up to 20 000 m2/m3 and even more. These areas can be easily accessible, as flow conditions are often highly periodic and transparent microreactors are available. For the nondispersing... [Pg.155]

The relationship between the structure of the disordered heterogeneous material (e.g., composite and porous media) and the effective physical properties (e.g., elastic moduli, thermal expansion coefficient, and failure characteristics) can also be addressed by the concept of the reconstructed porous/multiphase media (Torquato, 2000). For example, it is of great practical interest to understand how spatial variability in the microstructure of composites affects the failure characteristics of heterogeneous materials. The determination of the deformation under the stress of the porous material is important in porous packing of beds, mechanical properties of membranes (where the pressure applied in membrane separations is often large), mechanical properties of foams and gels, etc. Let us restrict our discussion to equilibrium mechanical properties in static deformations, e.g., effective Young s modulus and Poisson s ratio. The calculation of the impact resistance and other dynamic mechanical properties can be addressed by discrete element models (Thornton et al., 1999, 2004). [Pg.157]

The microstructure of the multiphase media is often the product of phase transitions, e.g. (i) capillary condensation in the porous media, (ii) phase separation in polymer/polymer and polymer/solvent systems, (iii) nucleation and growth of bubbles in the porous media, (iv) solidification of the melt with a temporal three-phase microstructure (solid, melt, gas), and (v) dissolution, crystallization or precipitation. The subject of our interest is not only the topology of the resulting microstructured media, but also the dynamics of its evolution involving the formation and/or growth of new phases. [Pg.160]


See other pages where Multiphase microstructure is mentioned: [Pg.73]    [Pg.662]    [Pg.73]    [Pg.662]    [Pg.88]    [Pg.203]    [Pg.60]    [Pg.93]    [Pg.1108]    [Pg.223]    [Pg.562]    [Pg.40]    [Pg.52]    [Pg.181]    [Pg.398]    [Pg.208]    [Pg.207]    [Pg.118]    [Pg.131]    [Pg.334]    [Pg.572]    [Pg.635]    [Pg.27]    [Pg.89]    [Pg.30]    [Pg.173]    [Pg.37]    [Pg.372]    [Pg.394]    [Pg.22]    [Pg.140]    [Pg.142]    [Pg.143]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Microstructure multiphasic

Multiphase Microstructures

Multiphase microstructured reactors

© 2024 chempedia.info