Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microlites

The column is swept continuously by a carrier gas such as helium, hydrogen, nitrogen or argon. The sample is injected into the head of the column where it is vaporized and picked up by the carrier gas. In packed columns, the injected volume is on the order of a microliter, whereas in a capillary column a flow divider (split) is installed at the head of the column and only a tiny fraction of the volume injected, about one per cent, is carried into the column. The different components migrate through the length of the column by a continuous succession of equilibria between the stationary and mobile phases. The components are held up by their attraction for the stationary phase and their vaporization temperatures. [Pg.20]

Titrations conducted with microliter or picoliter sample volumes require a smaller absolute amount of analyte. For example, diffusional titrations have been successfully conducted on as little as 29 femtomoles (10 mol) of nitric acid. Nevertheless, the analyte must still be present in the sample at a major or minor level for the titration to be performed accurately and precisely. [Pg.312]

The majority of FI A applications are modifications of conventional titrimetric, spectrophotometric, and electrochemical methods of analysis. For this reason it is appropriate to evaluate FIA in relation to these conventional methods. The scale of operations for FIA allows for the routine analysis of minor and trace analytes and for macro-, meso-, and microsamples. The ability to work with microliter injection volumes is useful when the sample is scarce. Conventional methods of analysis, however, may allow the determination of smaller concentrations of analyte. [Pg.658]

For the chromatographic column, flow of solution from the narrow inlet tube into the ionization/desolvation region is measured in terms of only a few microliters per minute. Under these circumstances, spraying becomes very easy by application of a high electrical potential of about 3-4 kV to the end of the nanotube. Similarly, spraying from any narrow capillary is also possible. The ions formed as part of the spraying process follow Z-shaped trajectories, as discussed below. [Pg.66]

The solution to be nebulized can be a one-off sample, pumped or drawn into the nebulizer at a rate varying from a few microliters per minute to several milliliters per minute. Alternatively, the supply of solution can be continuous, as when the nebulizer is placed on the end of a liquid chromatographic column. [Pg.139]

Organic Carbon. The total organic carbon (TOC) in a water sample is determined by injecting a microliter sample into a heated, packed tube in a stream of oxygen. The water is vapori2ed and carbon is converted to carbon dioxide, which is detected with a nondispersive infrared analy2er. [Pg.232]

Cool on-column injection is used for trace analysis. Ah. of the sample is introduced without vaporization by inserting the needle of the syringe at a place where the column has been previously stripped of hquid phase. The injection temperature must be at or below the boiling point of the solvent carrying the sample. Injection must be rapid and no more than a very few, usuahy no more than two, microliters may be injected. Cool on-column injection is the most accurate and reproducible injection technique for capihary chromatography, but it is the most difficult to automate. [Pg.109]

An alternative to TBP distillation is simulated distillation by gas chromatography. As described by Green, Schmauch, and Worman [Anal. Chem., 36, 1512 (1965)] and Worman and Green [Anal. Chem., 37, 1620 (1965)], the method is equivalent to a 100-theoretical-plate TBP distillation, is veiy rapid, reproducible, and easily automated, requires only a small microliter sample, and can better... [Pg.1326]

It is seen that columns having diameters less than 2 mm will only tolerate a maximum sample volume of a fraction of a microliter. Although larger volume valves can be used to inject sample volumes of this size, the dispersion from the valve is still likely... [Pg.291]

It is seen that the maximum sample volume ranges from a fraction of a microliter when (a=1.01) to several ml when (a) = 1.2. The small sample volume results from... [Pg.406]

S. Palmarsdottir and L. E. Edholm, Enhancement of selectivity and concentration sensitivity in capillary zone electrophoresis by on-line coupling with column liquid chromatography and utilizing a double stacking procedure allowing for microliter injections , 7. Chromatogr. 693 131-143 (1995). [Pg.214]

Mikro-lith, m. microlite. -lunker, n. microcavity, micropore, -mechaaik, /. micromechanics, -meterschraube, /. micrometer screw. [Pg.298]

A more complex but more versatile separation method is chromatography, a technique widely used in teaching, research, and industrial laboratories to separate all kinds of mixtures. This method takes advantage of differences in solubility and/or extent of adsorption on a solid surface. In gas-liquid chromatography, a mixture of volatile liquids and gases is introduced into one end of a heated glass tube. As little as one microliter (10-6 L) of sample may be used. The tube is packed with an inert solid whose surface is coated with a viscous... [Pg.6]

To prepare CO solution for the experimental purpose, it is recommended to bubble 20 ml of stock solution in a sealed glass tube with a stream of pure CO gas. The bubbling process lasts for 20 min under the pressure of 100 kPa at 37°C [3]. One microliter of this CO-saturated solution is estimated to contain 30 ng of the gas based on the solubility of CO at 37°C, the extent of dilution of the CO-saturated solution, and the assumption that the loss of the added CO from the bath solution at the time of experiments is negligible. The stock solution of CO should be freshly prepared before each experiment and then should be diluted immediately to the desired concentration with the bath solution or culture media. [Pg.322]

Slagt et al. [134] have stated that because of their thermal instability and reactivity sultones could not be easily analyzed by gas chromatography. They studied the two methods published by Martinsson and Nilsson using a Carlo Erba Fractovap G1 equipped with a flame ionization detector and a glass column (length 0.65 m OD 1/4 in.) filled with 10% OV 1 on Chromosorb W-AW (80-100 mesh). The column temperature was 230°C and the injector/de-tector temperature 275°C. The gas flow rates were N2 25 ml/min (carrier gas), H2 25 ml/min, and air 250 ml/min. One microliter of sample was injected. [Pg.447]

Unfortunately, exclusion chromatography has some inherent disadvantages that make its selection as the separation method of choice a little difficult. Although the separation is based on molecular size, which might be considered an ideal rationale, the total separation must be contained in the pore volume of the stationary phase. That is to say all the solutes must be eluted between the excluded volume and the dead volume, which is approximately half the column dead volume. In a 25 cm long, 4.6 mm i.d. column packed with silica gel, this means that all the solutes must be eluted in about 2 ml of mobile phase. It follows, that to achieve a reasonable separation of a multi-component mixture, the peaks must be very narrow and each occupy only a few microliters of mobile phase. Scott and Kucera (9) constructed a column 14 meters long and 1 mm i.d. packed with 5ja... [Pg.36]

The contemporary chromatograph used for analytical purposes is a very complex instrument that may operate at pressures up to 10,000 p.s.i.and provide flow rates that range from a few microliters per minute to 10 or 20 ml/minute. Solutes can be detected easily at concentration levels as low as lxlO-9 g/ml and a complete analysis can be carried out on a few micrograms of sample in a few minutes. The range of liquid chromatographs that is available extends from the relatively simple and inexpensive instrument, suitable for the majority of routine analyses, to the very elaborate and expensive machines that are more appropriate for analytical method development. [Pg.123]

There are basically two types of LC sample valve, those with an internal loop and those with an external loop. Valves with an internal loop are normally designed to deliver sample volumes of less than one microliters. Valves with external loops can deliver sample volumes ranging from a few microliters to several milliliters or more. In general, LC sample valves must be able to sustain pressures up to 10,000 p.s.i., although they are likely to operate on a continuous basis, at pressures of 3,000 p.s.i. or less. [Pg.138]


See other pages where Microlites is mentioned: [Pg.119]    [Pg.28]    [Pg.45]    [Pg.100]    [Pg.568]    [Pg.577]    [Pg.609]    [Pg.101]    [Pg.633]    [Pg.424]    [Pg.209]    [Pg.323]    [Pg.246]    [Pg.397]    [Pg.450]    [Pg.451]    [Pg.108]    [Pg.350]    [Pg.417]    [Pg.37]    [Pg.236]    [Pg.651]    [Pg.420]    [Pg.221]    [Pg.4]    [Pg.128]    [Pg.141]    [Pg.196]    [Pg.253]    [Pg.253]    [Pg.174]    [Pg.136]    [Pg.141]   
See also in sourсe #XX -- [ Pg.355 , Pg.895 ]




SEARCH



Microlite

Microlite

Microliter

Microliter

Microliter plate

Microliter syringe

© 2024 chempedia.info