Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microdomain morphologies, block copolymers

Sakurai S., Kawada H., Hashimoto T., and Fetters L.J. Thermoreversible morphology transition between spherical and cyUndrical microdomains of block copolymers. Macromolecules, 26, 5796, 1993. [Pg.159]

Unlike the bulk morphology, block copolymer thin films are often characterized by thickness-dependent highly oriented domains, as a result of surface and interfacial energy minimization [115,116]. For example, in the simplest composition-symmetric (ID lamellae) coil-coil thin films, the overall trend when t>Lo is for the lamellae to be oriented parallel to the plane of the film [115]. Under symmetric boundary conditions, frustration cannot be avoided if t is not commensurate with L0 in a confined film and the lamellar period deviates from the bulk value by compressing the chain conformation [117]. Under asymmetric boundary conditions, an incomplete top layer composed of islands and holes of height Lo forms as in the incommensurate case [118]. However, it has also been observed that microdomains can reorient such that they are perpendicular to the surface [ 119], or they can take mixed orientations to relieve the constraint [66]. [Pg.204]

It is well known that block copolymers and graft copolymers composed of incompatible sequences form the self-assemblies (the microphase separations). These morphologies of the microphase separation are governed by Molau s law [1] in the solid state. Nowadays, not only the three basic morphologies but also novel morphologies, such as ordered bicontinuous double diamond structure, are reported [2-6]. The applications of the microphase separation are also investigated [7-12]. As one of the applications of the microphase separation of AB diblock copolymers, it is possible to synthesize coreshell type polymer microspheres upon crosslinking the spherical microdomains [13-16]. [Pg.601]

The best-known and simplest class of block copolymers are linear diblock copolymers (AB). Being composed of two immiscible blocks, A and B, they can adopt the following equilibrium microphase morphologies, basically as a function of composition spheres (S), cylinders (C or Hex), double gyroid (G or Gyr), lamellae (L or Lam), cf. Fig. 1 and the inverse structures. With the exception of the double gyroid, all morphologies are ideally characterized by a constant mean curvature of the interface between the different microdomains. [Pg.142]

Note 2 Microdomain morphologies are usually observed in block, graft, and segmented copolymers. [Pg.200]

The intrinsic 3D interfacial curvature in compositionally asymmetric block copolymers provides extra degrees of freedom for the phase behavior in hexagonally structured microdomains. It is now well established that confinement of a cylinderforming block copolymer to a thickness other than the characteristic structure dimension in bulk, together with surface fields, can cause the microstructure to deviate from that of the corresponding bulk material. Surface structures in Fig. 1 are examples of simulated [57-59] and experimentally observed morphologies [40, 49, 60-62] that are formed in thin films of bulk cylinder-forming block copolymers. [Pg.38]

Thermoplastic tri-block copolymers are interesting since they possess novel properties different from those of the homo- or copolymers. The thermoplastic elastomers have many of the physical properties of rubbers, i.e., softness, resilience, and flexibility. The unique properties of this kind of copolymer are due to the microphase separation of the hard crystalline domains dispersed in a continuous amorphous matrix (Fig. 6). Such phase morphology provides a physical network of flexible chains cross-linked by crystalline microdomains. The advantages over natural vulcanized rubbers are that thermoplastic elastomers are readily soluble in an appropriate solvent and can be processed as thermoplastics [109],... [Pg.56]

Instead of observing the change of the morphology as a function of the film thickness, surface boundaries could also be used to control the wetting layer morphology at interfaces, the surface topographies, and the microdomain period [148]. In the case of symmetric or asymmetric wetting of the block copolymer at... [Pg.181]

Block copolymers with well-defined segments often show microphase-separated morphologies (such as lamellar layers, hexagonal ordered cylinders, and micelle formation). If we use SCLCP blocks together with non-liquid crystalline segments, the mesophases are formed within one of the separated microdomains. If the non-SCLCP block has a higher Tg than the phase transition temperature of the mesophase, the amorphous block should physically support the SCLCP microdomains, forming a self-supported SCLCP system. [Pg.61]

As discussed below, the quality of the alignment (and even its direction in the case of lamellar morphology), is influenced by temperature, as well as the frequency and strain amplitude of the aligning shear field. No general theory for the alignment of block-copolymer phases has yet been developed. However, studies of a number of different block-copolymer systems show that in ordered states with cylindrical domains, shear orients the cylinders parallel to the flow, while for lamallar microdomains, two different shear-induced orientations are commonly found, depending on alignment conditions in both of these orientations, the flow direction lies in the plane of the lamellae. [Pg.610]


See other pages where Microdomain morphologies, block copolymers is mentioned: [Pg.129]    [Pg.445]    [Pg.608]    [Pg.56]    [Pg.126]    [Pg.149]    [Pg.143]    [Pg.144]    [Pg.197]    [Pg.206]    [Pg.211]    [Pg.213]    [Pg.16]    [Pg.105]    [Pg.367]    [Pg.2]    [Pg.52]    [Pg.60]    [Pg.130]    [Pg.186]    [Pg.195]    [Pg.200]    [Pg.202]    [Pg.145]    [Pg.119]    [Pg.327]    [Pg.11]    [Pg.182]    [Pg.587]    [Pg.114]    [Pg.102]    [Pg.611]    [Pg.174]    [Pg.42]    [Pg.43]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Block copolymer morphology

Block copolymers, microdomain

Block morphology

Copolymer microdomains

Microdomain

Microdomain morphologies, block

Microdomain morphology

© 2024 chempedia.info